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Abstract

Watermarking, the practice of embedding imperceptible information into media
such as images, videos, audio, and text, is essential for intellectual property pro-
tection, content provenance and attribution. The growing complexity of digital
ecosystems necessitates watermarks for different uses to be embedded in the same
media. However, to detect and decode all watermarks, they need to coexist well
with one another. We perform the first study of coexistence of deep image wa-
termarking methods and, contrary to intuition, we find that various open-source
watermarks can coexist with only minor impacts on image quality and decoding
robustness. The coexistence of watermarks also opens the avenue for ensembling
watermarking methods. We show how ensembling can increase the overall message
capacity and enable new trade-offs between capacity, accuracy, robustness and
image quality, without needing to retrain the base models.

1 Introduction

Watermarking, the encoding of information into media such as images (Zhu et al., 2018), video
(Doerr and Dugelay, 2003; Luo et al., 2023), audio (Hua et al., 2016) or text (Liu et al., 2024) in
imperceptible ways, has long been a cornerstone tool for intellectual property protection. While
watermarking is not a new technology, it is experiencing a resurgence in interest as a result of the
recent growth of Al-generated content and the increased societal expectations and scrutiny (Longpre
et al., 2024). Watermarking has been proposed as a tool for restoring stripped content provenance
metadata (Collomosse and Parsons, 2024), and for content attribution, where it can be used to trace
what training data influenced a newly generated sample (Asnani et al., 2024). In spite of concerns
about stripping and spoofing watermarks (Zhao et al., 2023), standards such as C2PA (C2PA, 2025)
implement solutions with visual similarity search, manifest databases, and robust fingerprinting.

Watermarking adoption is increasing, especially if legally required as recently proposed (Ricketts,
2023; Wicks, 2024), making it necessary to consider complex ecosystems of watermark providers.
However, in a world with many watermarking algorithms, a user, or more likely, their web browser,
would not know which detector to use. As such, a sign-posting super watermark added alongside
the original watermark can indicate how the original watermark has been encoded and what detector
should be used to decode it. Furthermore, different actors need to encode different watermarks in
the same media, e.g. the author might want to add content provenance watermark, the distributor
could apply an intellectual property tracking watermark, and a generative model developer might
need a content attribution watermark. Hence, we will likely see more and more cases of multiple
watermarks in the same media.

Embedding multiple watermarks in one image requires their coexistence without mutual interference,
enabling independent and accurate decoding of every watermark. Yet, the coexistence of multiple deep
learning-based watermarks has not been studied, possibly with the assumption that they overwrite
each other. That is why we conducted a comprehensive analysis demonstrating they can indeed
effectively coexist within the same image. While coexistence incurs minor reductions in image
quality and decoding robustness, it persists even when controlling for these factors.
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Figure 1: Two use-cases requiring coexistence of watermarks in the same image. A. A super watermark
informs the user which watermark detector to use for this image. For a super watermark to work, it has to
coexist with the main watermark. B. As different actors would use different watermarks for content provenance,
intellectual property protection and content attribution, these all need to be able to coexist in the same image.

The coexistence of watermarks opens up an avenue for building watermarking ensembles. If two
watermarks, with capacity m; and mq bits, generated with different methods can both be present
in a media, then one can effectively encode m1-+ms bits in the image. Combining such watermark
ensembling with watermark strength clipping and error-correcting codes, can modify the capacity-
accuracy-robustness-quality trade-offs of existing methods with no need to retrain. We show how one
can improve existing watermarking techniques by ensembling them with others.

In summary, the contributions of this paper are as follows:

i. We evaluate whether image watermarking techniques can coexist when applied to the same
image and demonstrate that coexistence happens to a much greater degree than expected.

ii. We demonstrate that some level of coexistence persists even when one controls for the small
quality and robustness degradation resulting of the application of the second watermark.

iii. We show how coexistence enables the ensembling of watermarking models and can be used
to modify the performance of existing methods without retraining.

Our experiments focus on image watermarks as the most mature watermarking domain but the same
principles likely apply to video, audio and possibly text watermarking.

2 Preliminaries

Image watermarking. Image watermarking is the act of encoding a string of bits (a secret) by
perturbing the pixel values of an image (cover image) in a way that is minimally disruptive and is
robust to edits. We will consider the setting when the detector does not have access to the cover
image (blind watermarking). Watermarking requires a trade-off between four competing objectives:

i. Capacity: the length of the secret message (in bits);

ii. Image quality: the amount of distortion added to the cover image to embed the secret, often
measured in peak signal-to-noise ratio (PSNR), larger values indicating better quality;

iii. Accuracy: the fraction of correctly decoded secrets, usually over a test dataset of images;

iv. Robustness: the fraction of secrets we can decode correctly when certain transformations
or edits have been added to the image after watermarking. There is no commonly agreed on
set of transformations, so we consider the augmentations used for training several popular
methods, namely RivaGAN, SSL, TrustMark (low, medium, high), see the details in App. D.

Increasing capacity often lowers the image quality, accuracy, and robustness. Similarly, improving
accuracy and robustness typically reduces quality and/or capacity (if using error-correction), while
enhancing image quality tends to lower accuracy and robustness. These trade-offs make watermarking
a multi-objective problem with no single “best” method, with only Pareto-optimal solutions. In the
literature, bit accuracy is often measured instead of full secret accuracy. We believe that full secret
accuracy is a better indicator of performance, as recovering the entire message is usually necessary.
Therefore, we report the fraction of cases with all bits being correct decoded.

Watermarking methods. Classical watermarking methods are based on perturbing the representa-
tion of an image in some transform domain: discrete cosine transforms (Dct Tang and Aoki, 1997),
discrete wavelet transforms (Dwt Wang et al., 1998, or a combination of the two (DwtDct Al-Haj,
2007 and DwtDctSvd Navas et al., 2008). Deep watermarking leverages neural networks to do



Table 1: Watermarks from different methods can coexist. We first apply the watermark corresponding to the
row, then the one to the column. A new random secret is sampled for every watermark. We report the fraction of
secrets with all bits correctly decoded. We show the accuracy of the first method alone (in brackets), followed by
the first method when the second is applied, followed by the same for the second method. Surprisingly, for a
number of pairs, the application of the second watermark does not overwrite the first watermark. These are the
cases where the first two numbers are close, indicating that the accuracy of the first watermark is unaffected
when the second is applied. The results are averaged over 1020 samples from Adobe Stock.

DwtDct DwtDctSvd HiDDeN RivaGAN RoSteALS  SSL (42dB,30bits) TrustMark B TrustMark Q

DwtDct 0% /! 54% 59% / 85% 34% / 15% 19)53% /| 76% 50% /! 72% 53% / 93% 52% /' 96% 12)53% /| 95%
DwtDctSvd 78% /(51%)50% 0% / 87% 67% /! 16% 43% / 7% 5% /' 72% 82% / 97% 83% /! 96% 82% /! 94%
HiDDeN 13% /i 55% 14% / 87% 0% / 0% 10% /. 76% 3% /1 2% 15% /: 98% 14% /. 96% 12% /. 95%
RivaGAN 75% / 54% 4% / 93% 70% /(15%)14% 0% /1 14% 38% /' 70% 70% / 98% 71% /(96%)96% 72% /1 94%
RoSteALS 71% / 53% 65% / 100% 66% /(15%)14% 57% /! 81% 0% / 0% 67% / 99% 49% /(96%)96% 51% /! 96%

SSL (42dB,30bits) 58% /' 53% 65% / 86% 36% /(15%)16% 73% /1 79% 21% / 1% 0% /: 98% 82% /(96%)95% 81% /! 95%
TrustMark B 96% / 52% 93% / 95% 95% /(15%)15% 94% /1 79% 39% / 66% 94% / 98% 0% /1 91% 0% /1 94%
TrustMark Q 94% 52% 89% 95% 90% /(15%)14% 88% 7% 18% 67% 86% 98% 0% 95% 0% 90%

the encoding and decoding of images, leading to more robust watermarks with less distortion with
methods such as HiDDeN (Zhu et al., 2018), RivaGAN (Zhang et al., 2019), RoSteALS (Bui et al.,
2023b). SSL uses a pretrained image encoder and allows selecting a carrier vector, target image
quality and message length at inference time (Fernandez et al., 2022). TrustMark (Bui et al., 2023a,
2025) comes in versions with higher accuracy (TrustMark B) and higher quality (TrustMark Q)
and has a controllable watermark strength, set to 0.95 by default. Generative watermarking integrates
image generation and watermarking to produce watermarked images directly (Wen et al., 2023;
Fernandez et al., 2023). However, since these methods do not produce a non-watermarked image, we
cannot measure quality degradation, hence we will not consider them in this work.

3 Watermarking methods can coexist

Why might we need more than one watermark in the same image? Although media manipulation
and disinformation are longstanding issues, recent advancements in generative models have intensified
concerns. This has led to a push for comprehensive tools to assure media authenticity (Jones,
2023), often relying on watermarking technology (Gowal and Kohli, 2023; David, 2024), with
some proposals to mandate it by law (Ricketts, 2023; Wicks, 2024). With many actors introducing
watermarks using diverse techniques, it is challenging for users —and their web browsers— to
determine which decoder to use for a given image. For example, C2PA, the most widely adopted
content provenance standard, is agnostic to watermarking technology and supports any watermark
(C2PA, 2025). Naively trying all decoders is impractical, as it requires storing all of them locally or
making numerous API calls, which is costly and inefficient. Furthermore, different providers might
use the same watermarking method but encode the messages in different ways, leading to multiple
watermarks being decoded with only one being the intended one.

We need an efficient way to identify the decoder for a given watermark. One solution is adding a
second watermark carrying the provider identifier, similarly to a disk partition table. We call this
identification watermark a super watermark (see Fig. 1A). With a unified standard for the super
watermark, a web browser could support many decoders without evaluating every image against all
of them.! For a super watermark to be effective, it must coexist with the main watermark without
hindering its decodability. Another scenario requiring watermark coexistence is the increasingly
complex media production and distribution chains, with more and more actors adopting watermarking.
For instance, a photo might come with a watermark and editing it in Photoshop might add another to
recover its provenance metadata, if stripped. Publishers may add watermarks for copyright detection
and developers of generative models might watermark the image to track its contribution to new
content and remunerate the copyright holder (Fig. 1B). These varied uses necessitate that watermarks
can be applied and decoded independently, i.e., watermarks that can coexist.

These two settings, super watermarks for selecting the correct decoder and multi-actor content
provenance chains, depend on different watermarks coexisting in the same image. Yet, to our
knowledge, watermark coexistence has not been studied before. While coexistence has been proposed

'Different methods tend to have different watermark residuals (see App. E), hence one might consider
training a classifier to map images to watermarking methods. Unfortunately, this is impractical because i) the
classifier would need retraining and redistribution for each new method, and ii) different providers might use the
same technology but encode messages differently.
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Figure 2: Watermarks can coexist in the same image. We show accuracy, robustness and image quality when
applying all possible pairs of methods. The left arrow for each metric indicates the change in performance
of the first method with and without the second one; vice-versa for the right arrow. In general, two different
watermarks can be added to the same image one after the other (in series) and both can be decoded with non-zero
accuracy. However, coexistence tends to come at a small cost of accuracy, robustness and image quality. We
have highlighted the cases where there is no significant reduction in accuracy and robustness.

for classical frequency-based methods (Sheppard et al., 2001; Wong et al., 2003; Zear et al., 2018),
these techniques do not apply to modern deep-learning-based approaches.

Watermarks can coexist in the same image. Considering that watermark coexistence is critical for
multi-actor provenance chains and super watermarking, we study to what extent existing open-source
techniques can coexist. In the simplest setting, we can apply two watermarks sequentially and
measure the accuracy (fraction of correctly decoded secrets) for both methods. We expect the second
watermark to be detectable, as the presence of the first should not affect the addition of the second.
However, we anticipate that the second watermark would overwrite the first, resulting in 0% accuracy
for the first watermark. Similarly, we expect that applying the same watermarking method twice with
different secrets would yield low accuracy for the first secret. In Table 1, we present results for 8
watermarking methods, applying each pair in both possible orders. We report the accuracy of the
first method, followed by the second. The accuracy when a method is applied alone is shown in grey.
When we apply SSL after itself, we use two different carrier vectors.

Our first observation is that no watermarking method can coexist with itself: decoding the first secret
yields 0% accuracy across the diagonal in Table 1. In other words, watermarking methods overwrite



their previous message. That holds true also for different but similar methods like TrustMark Q and
TrustMark B. Recovering the first secret is unlikely because even if both secrets were theoretically
preserved, decoders can output only one secret. SSL is an exception since both encoder and decoder
are conditioned on the carrier vector, yet it too cannot coexist with itself.

Our second observation is the high accuracy for the second method across the board. We see at most
a few percentage points drop in accuracy for the second method when two methods are applied. In
some cases, we even notice a slight improvement in the accuracy of the second method compared
to its solo application, possibly because these methods find it easier to encode noisier images (see
columns for DwtDct, DwtDctSvd, RivaGAN, and SSL). Therefore, the presence of a watermark does
not hinder adding a new one. The only exceptions are HiDDeN, RivaGAN, and RoSteALS, whose
second watermark shows significantly lower accuracy when the same method is applied twice.

Surprisingly, and contrary to our expectations that watermarks overwrite each other, often the secret
of the first watermark can also be decoded with high accuracy! Since this occurs in most cases, it is
more interesting to focus on where coexistence fails. As mentioned earlier, when applying the same
watermarking method twice, or when watermarks from the same family are used (e.g., TrustMark
Q and TrustMark B or SSL with different carrier vectors), the first watermark’s secret seems to
be overwritten. RoSteALS overwrites the previous watermark, reducing its accuracy by up to 76%
(after TrustMark Q). SSL loses significant accuracy when it is the first method, for example, drop
by 58% when applied before HiDDeN. In other cases, the first watermark can be detected with only a
moderate drop in accuracy, with lower numbers corresponding to watermarks with lower baseline
accuracy. There are also cases where the detection of the first watermark is improved by the presence
of the second, e.g., DwtDct followed by DwtDctSvd, RivaGAN, SSL, TrustMark B or TrustMark
Q. Thus, existing watermarking methods coexist well out of the box.

Channel coding interpretation of why watermark coexistence is surprising. Watermarking
transmits information (the message) over a medium (the image). Traditionally, communication
channels are studied in frequency domain (Goldsmith, 2005). Analogous to multiple watermarking,
frequency-division multiple access (FDMA) splits the frequency spectrum among users to prevent
interference. However, FDMA requires explicit coordination —with authorities dividing the radio
frequency spectrum— limiting users to a fraction of the channel’s capacity. Watermark coexistence
suggests capacity division might be occurring here as well, even without explicit coordination, akin
to radio communicators randomly selecting different frequency bands and voluntarily restricting
their bandwidth. As deep watermarking is highly non-linear, we cannot directly apply this frequency
intuition. Nevertheless, coexistence might indicate that existing methods fail to fully utilize the
image capacity to carry information imperceptibly. If a method fully utilized the “channel”, it would
overwrite any other watermark, which Table 1 indicates to be not happening. In App. A we do offer
a possible geometric explanation as to why watermark coexsistence might naturally occur and in
Table 2 shows that residuals of different methods tend to be orthogonal.

Watermark coexistence does not immediately imply that existing methods are suboptimal. One
might assume that current watermarking techniques are close to Pareto-optimal. However, watermark
coexistence suggests that deep watermarking methods may not fully utilize the available capacity, i.e.,
they fail to use the whole channel. If messages of lengths m; and my can be encoded and decoded
using different methods, then the true watermarking capacity is at least mi+msy, implying that a
method reaching this capacity should exist. While tempting, this view is too simplistic. Recall the
four-way trade-off among capacity, quality, accuracy, and robustness from Sec. 2. To argue that the
channel is underutilized, the effective increase in capacity that coexistence hints at must not reduce
the other three factors. To check whether the capacity gain from ensembling comes at the cost of
lower image quality and robustness, in Fig. 2 we show the accuracy, robustness, and quality for both
methods and all watermarking pairs. For each metric, we display two arrows: the left for the method
applied first and right one for the second. Each arrow starts at the method’s standalone value and ends
at its value when applied in series. The figure demonstrates that changes in robustness generally track
changes in accuracy; when the first method maintains accuracy after the second is applied, it also
tends to maintain robustness. There are also cases where the accuracy and robustness of both methods
are barely affected by their joint application, for example, DwtDct and DwtDctSvd, TrustMark B or
TrustMark Q followed by DwtDct, and HiDDeN followed by SSL, TrustMark B or TrustMark Q
(highlighted in Fig. 2). The impact on image quality is more complex. The right-most column in each
plot shows that image quality is always worse when two watermarks are applied. Thus, coexistence
might involve a trade-off between capacity and quality.
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Figure 3: Controlling for the image quality degradation due to ensembling. We can reduce the image quality
degradation in Fig. 2 due to ensembling by clipping the watermarks to strength 0.5 (see Sec. 4 and Lst. 2 for
details). Improving the image quality comes at a further drop in accuracy and robustness but some level of
coexistence (i.e., non-zero accuracy for both methods, the endpoints of the leftmost pair of arrows in each cell)
persists for most pairs of watermarks. We have highlighted the cases with accuracy >25%.

For many watermarking method pairs, some level of coxistence is preserved even after con-
trolling for image quality. We can mitigate the lower image quality by reducing the watermark
strength so that the final PSNR approximates the mean of the individual methods’ PSNRs (details
in Lst. 2 with strength=0.5). The results in Fig. 3 show that controlling for the reduced quality
results in a non-negligible reduction in accuracy and robustness for most methods though they often
are not completely overwritten. As the first set of arrows (corresponding to the detection accuracy) do
not go down to zero for most pairs, the accuracy of the first method is not zero (we have highlighted
the cases with accuracy >25%). Therefore, the success of coexistence appears to be conditional on
the implicit trade-offs between capacity, accuracy, robustness and image quality.

The implicit trade-offs underlying watermark coexistence do not explain why it happens in the
first place. At first, the coexistence of watermarks suggests underutilization of channel capacity
across methods. However, as shown in Fig. 3, the situation is more nuanced: much of the added
capacity comes at the cost of reduced quality and robustness. While these trade-offs indicate that
underutilization does not fully explain watermark coexistence, they do not clarify why coexistence
occurs. Our results suggest that different methods encode information in different, quasi-orthogonal
subspaces. It remains an open question why this happens and how to encourage or prevent it.
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Strength clipping Error correction Ensembling All three
Reducing the strength of the Error correction boosts ~ Ensembling increases the capacity together
watermark improves image accuracy by adding by applying two separate
quality but reduces the accuracy redundancy watermarks in the same image
Capacity 3 4+
Quality 1+ + + 3
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Strength clipping and error-correction always leave the Ensembling boosts capacity Depending on the strength of the
capacity and/or accuracy and robustness worse off at a small quality, capacity individual effects, applying all three
and robustness cost might result in a better model
Figure 4: Comparison of the tools for modifying existing watermarking methods. Combining strength
clipping and ECCs with ensembling, as proposed, can vvdglead to new trade-offs and, possibly, better models.

4 Ensembling as a watermark model modification tool

Applications of invisible watermarks have varying requirements. An image generator developer
might be less concerned about artifacts, since users lack a non-watermarked image for comparison,
but may wish to encode extra information like the prompt used. In contrast, content provenance
frameworks need high image quality to ensure adoption among creators. Conversely, print media
watermarking might need higher robustness to remain detectable after printing and photographing,
with lower capacity and quality requirements. Unfortunately, watermarking methods are not easily
customizable. Once trained for a specific trade-off between capacity, quality, accuracy and robustness,
adjusting this balance typically requires retraining.> Consequently, each application might require a
slightly different model. Ideally, one would want to modify a watermarking method post-training to
adapt it to a new application. We have only seen two tools used for this purpose:

i. Strength clip: One can perform a linear interpolation between the original image and the
watermarked image. By bringing the final image closer to the original image, one can
improve the image quality, while reducing the detection accuracy and robustness.

ii. Error-correcting codes (ECCs): Error-correcting codes are used for reducing errors in
data transmission over unreliable or noisy communication channels by reducing the number
of information carrying bits from n to k and introducing n — k redundancy bits in their
place (Hamming, 1950). Applying ECCs to the watermarked message reduces the effective
capacity of the watermarking method but improves the accuracy and robustness.

While these tools can improve the image quality, accuracy and robustness of existing methods, they
a. cannot increase the information capacity, and b. leave one of the objectives worse off and hence
cannot be used to obtain a strictly better watermarking method without retraining.

Watermark ensembling boosts capacity. Our observation of watermark coexistence in Sec. 3
offers a potential avenue for a new post-training modification tool: watermark ensembling. If the
watermarks generated by two different models coexist, then the application of the two methods can
be effectively considered to be a new watermarking method having the sum of the capacities of the
individual methods. Hence, ensembling directly addresses the first limitation of strength clip and
ECCs: it can be used to increase the capacity without retraining (see the third column in Fig. 4). For
example, ensembling TrustMark B and SSL (42 dB, 100 bits) gives us 200bit capacity at the cost of
lower accuracy and robustness (the capacity doubling can be seen in the first column of Fig. 5A).

Combining strength clip, ECC and ensembling could, in principle, result in strictly better
models. As seen in Sec. 3, coexistence may come at a small quality, accuracy and robustness
cost, thus ensembling alone cannot result in strictly better models. Still, the application of all three
tools together could, in principle, outperform either of the two models we start with. Ensembling
two watermarking methods coexisting well together increases the capacity to the sum of the indi-
vidual capacities but slightly reduces quality, accuracy and robustness. Clipping the strength of
the watermarks will boost image quality and keep the capacity unchanged but may decrease the
accuracy and robustness even further. Finally, applying an ECC to the secret can restore the accuracy
and robustness, though reducing the effective capacity. Depending on the strength of each of the
individual steps, we can produce various watermarks with no training whatsoever, as seen in Fig. 4.

’Exceptions do exist, e.g., SSL allows choosing the secret length and target PSNR at watermarking time.
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Figure 5: Ensembling with another method can boost performance. These plots show two base watermarking
methods (the starting points of the left and the right arrows for each pair) and their ensemble with strength
clipping and ECC (the horizontal lines/arrow ends). In A. the ensemble has significantly larger capacity and
image quality, in B. ensembling SSL with TrustMark B boosts its robustness and quality, in C. ensembling
RoSteALS with SSL improves its accuracy and quality, and in D. ensembling HiDDeN with RoSteALS boosts its
capacity, accuracy, robustness and quality. Numerical values can be found in App. F.
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Figure 6: Ensembling as a tool for fine-tuning watermark trade-offs. We show how ensembling (together
with strength clipping and ECCs) can obtain models with new accuracy—quality trade-offs without further
training. In cases when ECC cannot be applied to the baseline models, the ensembles have higher accuracy or
better image quality than the base models (A). When ECC can be applied to one of the base models, then that
can result in higher accuracy than ensembling but ensembling still offers better image quality (B and C).

Experimental setup for testing post-training watermark modifiers. We consider two ensembling
approaches: series, where the second watermark is applied to an image already watermarked by
the first method (order matters), and parallel, where both watermarks are independently applied to
the original image, their residuals are averaged, with the result applied to the original image (order
doesn’t matter). Pseudo code is provided in Lst. 1. To adjust the watermark strength, we apply
PSNR clipping where a strength of 0 means the target PSNR is the lower of the individual methods’
PSNRs, and a strength of 1 means it is the higher one (pseudo code in Lst. 2). Clipping can also use
strengths outside this range. While one could apply the same target PSNR for all images, we opted
for an image-wise approach since PSNR values vary greatly between images. We use linear codes
(Purser, 1995; Guruswami et al., 2023) with block lengths matching the sum of the capacities of the
two base methods. We denote a binary linear code as LC[n, k, d], with n being the block size, k the
message size, and d the minimum Hamming distance between codewords. Such a code reduces the
effective capacity from n bits to & bits and can correct up to |(d—1)/2] bit flips using the resulting
n — k redundancy bits. The codes we use are from the code tables of Grassl (2006).

Ensembling with another method can boost the watermarking performance. We observe cases
where a method is improved along all dimensions. For example, in Fig. 5C, we can see that when
RoSteALS is ensembled with SSL (42 dB, 30 bits) (series application, 0.2 clipping, LC[130, 100, 10],
Lst. 7), we can maintain 100 bit capacity while boosting accuracy by almost 15%, robustness with
respect to RivaGAN augmentations with more than 8% and quality with 2dB while maintaining the



robustness to SSL augmentations. While SSL alone has higher accuracy, robustness and image quality,
its capacity is significantly lower. Similarly, in Fig. 5D we see the capacity of HiDDeN boosted from
48 bits to 102 bits when ensembled with RoSteALS (series, 1.0 clip, LC[148, 102, 14], Lst. 10), with
also small improvements in accuracy, robustness, and quality. At first sight RoSteALS might appear
to be better than the ensemble due to its higher accuracy and robustness. However, it has noticeably
lower image quality and 2 bits less capacity. However, it is important to note that in both of these
cases we improve over watermarking methods which are overall less performant.

Ensembling is not sufficient to produce state-of-the-art watermarking models. Despite the
examples above, when ensembling does improve weak watermarking methods, we did not find cases
when stronger methods were boosted across all metrics via ensembling. App. F shows a grid search
over different pairs of base models, ECCs, ensembling modes (series vs parallel) and strength clipping
settings. While there are ensembles that outperform all the base models across one or more metrics,
no ensemble dominates across all metrics. These results, therefore, indicated that ensembling alone
cannot produce state-of-the-art models. However, it might be possible that with other base models and
other ECCs, ensembling modes or strength clipping techniques, ensembling could result in models
that dominate across all dimensions.

Ensembling as a tool for fine-tuning watermarking trade-offs. While it is only for less powerful
models that ensembling leads to strictly better models, it can nevertheless be used for targeted
adjustments in order to meet the requirements of new watermarking applications. In Fig. 6 we explore
how ensembling achieves various accuracy—quality trade-offs. Each subplot shows ensembles of a pair
of watermarking methods: RivaGAN and DwtDctSvd (with LC[64, 36, 12], Lst. 3), RoSteALS and
RivaGAN (with LC[131, 32, 37], Lst. 8), and RoSteALS and HiDDeN (with LC[148, 49, 34], Lst. 9).
We ensemble them in series and in parallel and apply various levels of strength clipping: from strength
-0.2 to strength 1.2. We observe some inherent trade-offs. For example, in Fig. 6A, the base methods
have higher accuracy and image quality than the comparable ensembles but 4 bits less capacity.
Furthermore, there are ensembles with higher accuracy than the base models (top left corner) and
with higher quality than the base models (lower right). In Fig. 6B, while RoSteALS is not on the
accuracy—quality Pareto front, it has significantly higher capacity than the ensembles (100 bits vs
32 bits). Finally, in Fig. 6C, we see that the ensembles dominate the base models, RoSteALS and
HiDDeN, for all accuracy and quality values. However, RoSteALS has a much higher capacity (100
vs 49 bits). Overall, ensembling enables new trade-offs which would otherwise be accessible only via
retraining one of the base models.

Parallel ensembling tends to result in higher quality while series ensembling seems to result in
higher accuracy. This effect is especially prominent in Fig. 6A and C. As the parallel application
multiplies the individual watermarks by !/2 before combining them, it has a smaller image perturbation,
higher quality and less frequent need for strength clipping. This effect is clear from Fig. 7 which
shows that all series-ensembled images have PSNR under 40dB but 5.6% of the parallel-ensembled
images have PSNR higher than that. Finally, in Fig. 6A and C series ensembling without strength
clip has a drastic reduction of quality, albeit reaching the highest accuracy in both cases.

In some cases, a strong base method with ECC can perform better than ensembling. We
wish to measure the benefit of ensembling beyond only using ECC and strength clipping. Let’s
first look at applying ECC alone. ECCs are only applicable if the target capacity is lower than the
original model capacity; in case of spare bits for redundancy. Thus RivaGAN or DwtDctSvd, the base
methods in Fig. 6A, cannot use ECC. In Fig. 6B, we apply LC[100, 32, 25] (Lst. 4) as RoSteALS has
capacity 100 bits but the ensembles just 32 bits. While RoSteALS with LC[100, 32, 25] gets close to
100% accuracy, it maintains the poor image quality of RoSteALS. There are ensembles with similar
accuracy but about 2dB higher quality. Finally, in Fig. 6C, RoSteALS with LC[100, 48, 20] (Lst. 5)
does have significantly higher accuracy than the ensembles with similar PSNR. However, there are
ensembles that have up to 3.5 dB higher PSNR. Therefore, there are cases where applying ECC to
a base models can result in higher accuracy than ensembling with ECC but ECC cannot always be
applied (as in Fig. 6A) and cannot improve the image quality (Fig. 6B, C).

We also compare whether both ECC and strength clipping can outperform ECC, strength clipping
and ensembling and find that there are cases where this occurs. For example, in Fig. 8, simply
applying LC[100, 32, 25] (Lst. 4) to TrustMark Q with various strengths dominates all ensembles
of RivaGAN and TrustMark Q. Therefore, there are also cases when one might be better off simply
applying ECC and strength clipping (if possible) to the stronger model than to ensemble them first.
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Figure 7: Ensembling in parallel results in Figure 8: In some cases, applying ECC alone to a strong
higher image quality than ensembling in series. base method can perform better than ensembling. En-
The plot shows the distribution of PSNR of images  sembling RivaGAN and TrustMark Q (with various levels
watermarked with ensembles of RoSteALS and of strength clipping vs applying TrustMark Q at various
HiDDeN in series and in parallel (without strength ~ strengths alone. TrustMark Q alone with ECC is better
clipping) over 1020 images from Adobe Stock. than the ensemble at all quality/accuracy points.

Overall, ensembling is not a one-size-fits-all solution. Ensembling is the only way to increase
the capacity of an existing model without retraining. Combined with ECC and strength clipping,
ensembling opens new trade-off points but might not result strictly better watermarks. This is likely
due to the added capacity failing to compensate for the reduced accuracy and robustness. For example,
LCJ[200, 100, 32] (Lst. 11) uses 100 error-correcting bits but corrects only at most 15 bit flips. Overall,
one might be better off to apply ECC and/or strength clipping to a base model, or simply retraining it
for a new configuration, rather than ensembling it with another method.

5 Discussion and open questions

While we showed that different watermarks can coexist in the same image, we still lack understanding
and control of coexistence. Classic frequency analysis offers a good mental model but cannot be
directly applied to non-linear deep models. We need a new theory and tools to characterize and
evaluate the non-linear channels for encoding information in images, given resolution, quality and
robustness constraints. Such a theory would enable coexistence by design: by limiting the channels
individual methods use, designing techniques with explicit channel selection allowing multiple
coexisting watermarks with the same method, or, conversely, building methods that fail to coexist
with any other watermarks thus fully utilising the information-carrying capacity of the image.

Despite ensembling being used frequently for increasing the accuracy of classification and regression
tasks (Dong et al., 2020), for boosting robustness (Pang et al., 2019; Petrov et al., 2023), or for
achieving computational efficiency for large models (Fedus et al., 2022), we have not seen it applied
to watermarking, possibly because it was not obvious that watermarks can coexist. As we showed
that watermarks do coexist, we opened an avenue for their ensembling. We observed that ensembling
offers nuanced benefits: it boosts the capacity of existing models and open new trade-off points, but
sometimes one might be better-off by simply applying ECCs and strength clipping to a single well-
performing model as linear codes correct few errors relative to the extra capacity they use. Perhaps,
modern ECCs —for instance soft-decision ones which factor in the confidence with which each bit
is decoded (Fossorier and Lin, 2002)— could better utilise the extra capacity. Beyond parallel and
series ensembling, there could be more advanced adaptive techniques or small learnable mixers that
one could use for more performant ensembles. Finally, a further boost to the accuracy and robustness
of the ensembles could be possible by fine-tuning their decoders on the jointly watermarked images.

Our analysis was limited in several ways. We used PSNR as a proxy for image quality despite it not
tracking human quality perception well; in practice one might want to also consider other quality
metrics. Ensembling typically has a computational cost: both the encoding and the decoding steps
require inference through both watermarking models. This could be addressed by distilling the
two models into a single one. Finally, we focused on images, but watermarking (and hence their
coexistence and ensembling) could be applied to other domains such as video, audio and text.
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Impact statement

This paper explores the coexistence and ensembling of deep learning-based watermarking methods,
with implications for advancing digital media provenance. This work could positively benefit indus-
tries reliant on content provenance, such as journalism, entertainment, and Al-generated media. From
an ethical perspective, these advancements may strengthen media authenticity, reduce disinformation,
and enable fair attribution in the growing digital ecosystem.

Reproducibility statement

To ensure reproducibility of our experiments, we restricted ourselves to watermarking methods with
open-source implementations. We used the invisible-watermark implementations of DwtDct,
DwtDctSvd and RivaGAN and the official implementations of SSL, RoSteALS and TrustMark. For
HiDDeN, we used the Stable Signature reimplementation. Furthermore, we provide pseudo-code for
our ensembling strategies (in App. B), detailed description of the error-correcting codes we used (in
App. C), details about the augmentations for the robustness measures we benchmarked against (in
App. D) and comprehensive tables with all the experiments discussed in the paper (in App. F).
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A Geometric intuition as to why watermarks can coexist

We would like to offer a geometric intuition as to why watermarks could coexist in the same
image without overwriting one another. One explanation is that watermarks are designed to be
robust to various augmentations, which induces sparsity into what perturbations can be considered
valid watermarks. However, there are many possible sparse patterns that can satisfy the robustness
requirements and different watermarking methods might be —either by random selection, or due to
particular design decisions— picking different such patterns. As a result, the perturbations used by
different methods could be non-overlapping and might be sufficiently different so that they are still
identifiable even after composing.

Consider the space of all images Z = [0, 1]>*"*%_ Given an image = € Z, a watermarking method
selects a set of images W (z) and maps these images to messages. The capacity of the watermarking
method in bits is thus log, W (z). For our illustration we will take h = w = 1, and will consider
discretized pixel values (as used in practice). Hence, our space of all images Z would look like this:

When we watermark an image, we typically want to limit the perturbation ¢ applied to an image
x € 7 as a quality constraint. For example, a quality constraint formulated as a lower-bound on the
PSNR of the watermarked image can be described as limiting ¢ to lie in Ba(x, €), an {5 ball centred
at  with radius e = v/3wh 1010810 R—minPSNR/10_ with R being the range of pixel values (R = 1 in
our case). That means that out of the whole image domain above, we can only use the images near
our clean image x. The following illustrates these images in blue, with x at the centre of the 3 x 3 x 3
cube:

Finally, when watermarking, one typically has robustness constraints as well. That is, we want that
the watermarks are identifiable even after they are perturbed a little. Practically, that means that
we can only consider subsets of the above blue cube such that all their elements are sufficiently
spread out. Formally, the robustness requirement can be formulated as a tolerance relation,’ that is,
a non-transitive equivalence relation ~. For two images a,b € T the relation a ~ b holds if there
exists an augmentation under the robustness requirement that transforms «a into b or vice-versa. For a
watermarking method to satisfy such a robustness requirement, the set of images it uses to encode
messages cannot contain two images that can be confused under such a transformation, that is:

a b, Va,b e W(z).

However, there can exist many such sets W (z) under the same image quality and robustness con-
straints.

For the sake of our example, consider that we want our watermarking algorithm to be robust to
changing a single pixel value by one discretization step. With this robustness constraint, we can

3A tolerance relation on a set A is a binary relation ~ that is reflexive (a ~ a for all @ € A) and symmetric
(a~b = b~ aforalla,b € A). See Peters and Wasilewski (2012) for a review on tolerance relations.
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formulate two sets of images that a watermarking scheme might use (with the original image x being
marked in red):

Both sets are maximal: we cannot add an extra element that satisfies both the image quality and the
robustness constraints. Moreover, as both sets have size 4, that means that the maximum capacity of
watermarking algorithms with these constraints is 2 bits. From the above illustration, one can see
how the typical watermarking constraints induce symmetries and sparsity over the sets of images that
can be used for watermarking.

Notice also that the two sets are not overlapping and, furthermore, when we add their perturbations,
they are still not-overlapping, indicating why coexistence is possible. For example, if we apply the
green watermark to marked blue watermarked image, we see that the green and blue images are not
overlapping:

Of course, we also see degradation in the robustness and image quality. In the above illustration, some
watermarked images are further away from our original image x (in red) than the e corresponding
to our target PSNR. Furthermore, some watermarked images are next to each other, meaning that
the they are no longer robust to augmentations. However, notice that this is “graceful” degradation:
only some images have worsened image quality and robustness. This intuition supports the empirical
observations we saw in Sec. 3.

It is also important to note that in reality, we operate in higher dimensions with much more complex
robustness requirements. Therefore, the sparsity induced in real watermarking applications would
likely be much higher than in our toy example. Nevertheless, it remains an open question to perform
a formal analysis of watermark coexistence for this general case.
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B Pseudo-code for ensembling and strength clipping

G W N e

def series_ensemble (

original: Image,

wml: WatermarkingMethod, wm2: WatermarkingMethod, # callable watermarking methods

mi: List[bool]l, m2: List[bool] # the binary secrets for the coressponding watermarking methods
) -> Image:

watermarkedl = wmil(original, ml)
watermarked2 = wm2(watermarkedl, m2)
return watermarked?2

def parallel_ensemble(

original: Image,

wml: WatermarkingMethod, wm2: WatermarkingMethod, # callable watermarking methods

mi: List[booll, m2: List[bool] # the binary secrets for the coressponding watermarking methods
) -> Image:

watermarkedl = wml(original, ml)

watermarked2 = wm2(original, m2)

residuall = watermarkedl - original

residual2 = watermarked2 - original

parallel = original + 0.5 * residuall + 0.5 * residual2
return clip(parallel, MIN_PIXEL_VALUE, MAX_PIXEL_VALUE)

Listing 1: Pseudo-code for the series and parallel we use in our ensembling experiments.

def psnr_clip(watermarked: Image, original: Image, target_psnr: float) -> Image:
diff = watermarked - original
mse = mean(diff~2)
scaling_factor = sqrt (10~ (2*np.logl0(MAX_PIXEL_VALUE-MIN_PIXEL_VALUE) - target_psnr/10.0) / m)
if scaling_factor >= 1: # if no clipping is necessary
return watermarked
return clip(original + scaling_factor * diff, MIN_PIXEL_VALUE, MAX_PIXEL_VALUE)

def clip_to_strength(

watermarked: Image, original: Image,

strength: float,

wml: WatermarkingMethod, wm2: WatermarkingMethod, # callable watermarking methods

ml: List[booll, m2: List[bool] # the binary secrets for the coressponding watermarking methods
) -> Image:

watermarkedl = wml(original, ml)

watermarked2 = wm2(original, m2)

psnrl = psnr(original, watermarkedl)

psnr2 = psnr(original, watermarked2)

target_psnr = min(psnrl, psnr2) + strength * (max(psnrl, psnr2) - min(psnrl, psnr2))

return psnr_clip(watermarked, original, target_psnr)

Listing 2: Pseudo-code for the strength clipping we use in our ensembling experiments.
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C Construction of the error-correcting codes

Construction of a linear code [64,36,12] over GF(2):
[1]: [64, 36, 12] Linear Code over GF(2)
Extended BCHCode with parameters 63 11

Listing 3: Recipe for constructing a LC[64, 36, 12] binary linear error-correcting code capable of correcting up
to 5 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).

Construction of a linear code [100,32,25] over GF(2):
[1]: [102, 33, 26] Quasicyclic of degree 2 Linear Code over GF(2)
QuasiCyclicCode of length 102 with generating polynomials: x746 + x~"44 + x~41 + x739 + x°35 + x733
+ 1, x~46 + x~45 + x~44 + x~43 + x~42 + x~41 + x~40 + x~39 + x°38 + x~37 + x~35 + x"34 + x
~33 + x730 + x729 + x726 + x725 + x723 + x722 + x720 + x719 + x717 + x~14 + x~11 + x~10 + x°9
+ x°7 + x76 + x74
[2]: [101, 32, 26] Linear Code over GF(2)
Shortening of [1] at { 102 }
[31: [100, 32, 25] Linear Code over GF(2)
Puncturing of [2] at { 101 }

Listing 4: Recipe for constructing a LC[100, 32, 25] binary linear error-correcting code capable of correcting up
to 12 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).

Construction of a linear code [100,48,20] over GF(2):

[1]: [104, 52, 20] Linear Code over GF(2)
Extend the QRCode over GF(2)of length 103

[2]: [100, 48, 20] Linear Code over GF(2)
Shortening of [1] at { 101 .. 104 }

Listing 5: Recipe for constructing a LC[100, 48, 20] binary linear error-correcting code capable of correcting up
to 9 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).
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Construction of a linear code [130,30,39] over GF(2):
[1]: [8, 1, 8] Cyclic Linear Code over GF(2)
RepetitionCode of length 8
[2]: [127, 29, 43] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with Generating Polynomial x~98 + x~"91 + x~90 + x~89 + x~86 + x84 + x~83
+ x782 + x780 + x779 + x°78 + x777 + x"76 + x"74 + x"72 + x°71 + x°70 + x"65 + x"64 + x"61 +
x~59 + x7°568 + x757 + x756 + x"51 + x750 + x749 + x745 + x743 + x"42 + x40 + x°38 + x732 + x
~31 + x~27 + x~26 + x~25 + x~23 + x~718 + x~17 + x~15 + x~13 + x~12 + x~11 + x~9 + x°8 + x”5 +
x"4 + x72 + x + 1
[3]: [127, 30, 35] Linear Code over GF(2)
Subcode of dimension 30 between the cyclic codes of length 127 with Generating Polynomials x~91 +
x"89 + x787 + x"86 + x782 + x"80 + x"78 + x"76 + x~75 + x~71 + x"70 + x"67 + x"66 + x"62 + x

~60 + x~59 + x~57 + x"56 + x"55 + x°53 + x"52 + x750 + x"49 + x"48 + x"47 + x"46 + x"45 + x
~43 + x~40 + x°37 + x~35 + x734 + x°33 + x~31 + x729 + x~28 + x"27 + x726 + x~25 + x723 + x
~22 + x720 + x719 + x~17 + x~16 + x~15 + x~14 + x~13 + x~712 + x~10 + x79 + x°8 + x5 + x"4 +
1 and x798 + x791 + x790 + x~89 + x786 + x"84 + x783 + x782 + x780 + x"79 + x"78 + x"T7 + x
~76 + x°74 + x°72 + x°71 + x°70 + x"65 + x"64 + x"61 + x°59 + x°58 + x°57 + x"56 + x°51 + x
~50 + x~49 + x"45 + x~43 + x~42 + x~40 + x~38 + x732 + x~31 + x~27 + x726 + x~256 + x723 + x
~18 + x~17 + x715 + x713 + x~12 + x711 + x79 + x"8 + x°5 + x74 + x72 + x + 1

[4]: [135, 30, 43] Linear Code over GF(2)
ConstructionX using [3] [2] and [1]

[5]1: [131, 30, 40] Linear Code over GF(2)
Puncturing of [4] at { 1, 25, 86, 128 }

[6]1: [130, 30, 39] Linear Code over GF(2)
Puncturing of [6] at { 131 }

Listing 6: Recipe for constructing a LC[130, 30, 39] binary linear error-correcting code capable of correcting up
to 19 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).

Construction of a linear code [130,100,10] over GF(2):
[1]: [8, 7, 2] Cyclic Linear Code over GF(2)
Dual of the RepetitionCode of length 8
[2]: [135, 106, 9] Linear Code over GF(2)
Let C1 be the BCHCode over GF( 2) of parameters 127 7. Let C2 the SubcodeBetweenCode of dimension
106 between C1 and the BCHCode with
parameters 127 9. Return ConstructionX using C1, C2 and [1]
[3]: [136, 106, 10] Linear Code over GF(2)
ExtendCode [2] by 1
[4]: [130, 100, 10] Linear Code over GF(2)
Shortening of [3] at { 131 .. 136 }

Listing 7: Recipe for constructing a LC[130, 100, 10] binary linear error-correcting code capable of correcting
up to 4 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).

Construction of a linear code [131,32,37] over GF(2):
[1]: [8, 7, 2] Cyclic Linear Code over GF(2)
Dual of the RepetitionCode of length 8
[2]: [127, 29, 43] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with Generating Polynomial x~98 + x~"91 + x°90 + x~°89 + x~°86 + x°84 + x~83
+ x782 + x780 + x779 + x°78 + x777 + x"76 + x"74 + x"72 + x°71 + x°70 + x765 + x"64 + x"61 +
X759 + x758 + x757 + x°56 + x751 + x50 + x749 + x745 + x743 + x742 + x740 + x738 + x732 + x
~31 + x727 + x726 + x725 + x723 + x718 + x~17 + x715 + x~13 + x712 + x~11 + x79 + x78 + x5 +
x"4 + x72 + x + 1
[3]1: [127, 36, 35] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with Generating Polynomial x~91 + x~89 + x~87 + x~86 + x782 + x~80 + x°78
+ x°76 + x°75 + x°71 + x°70 + x"67 + x"66 + x"62 + x"60 + x°59 + x~57 + x7°56 + x~55 + x"53 +
x"52 + x750 + x749 + x748 + x"47 + x"46 + x"45 + x"43 + x740 + x~37 + x~35 + x734 + x733 + x
~31 + x729 + x728 + x727 + x726 + x725 + x723 + x722 + x720 + x719 + x~17 + x~16 + x"15 + x
~14 + x~13 + x~12 + x710 + x"9 + x"8 + x°5 + x4 + 1
[4]: [135, 36, 37] Linear Code over GF(2)
ConstructionX using [3] [2] and [1]
[5]1: [131, 32, 37] Linear Code over GF(2)
Shortening of [4] at { 132 .. 135 }

Listing 8: Recipe for constructing a LC[131, 32, 37] binary linear error-correcting code capable of correcting up
to 13 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).
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Construction of a linear code [148,49,34] over GF(2):
[1]: [4, 1, 4] Cyclic Linear Code over GF(2)
RepetitionCode of length 4
[2]: [4, 3, 2] Cyclic Linear Code over GF(2)
Dual of the RepetitionCode of length 4
[3]: [8, 4, 4] "Reed-Muller Code (r = 1, m = 3)" Linear Code over GF(2)
PlotkinSum of [2] and [1]
[4]: [8, 7, 2] Cyclic Linear Code over GF(2)
Dual of the RepetitionCode of length 8
[5]: [16, 11, 4] Quasicyclic of degree 4 Linear Code over GF(2)
PlotkinSum of [4] and [3]
[6]: [12, 7, 4] Quasicyclic of degree 3 Linear Code over GF(2)
Shortening of [5] at { 13 .. 16 }
[71: [127, 42, 32] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with generating polynomial x~85 + x~°83 + x~82 + x~77 + x~76 + x~75 + x"74
+ x°73 + x°71 + x°70 + x"69 + x"68 + x"67 + x"65 + x"63 + x760 + x"57 + x756 + x~55 + x"54 +
x"53 + x7°51 + x745 + x744 + x743 + x741 + x740 + x737 + x735 + x731 + x729 + x728 + x727 + x
~21 + x~17 + x~15 + x~712 + x°9 + x°7 + x4 + x°3 + x"2 + x + 1
[8]: [127, 42, 32] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with generating polynomial x~85 + x~84 + x~83 + x~80 + x~78 + x~76 + x~75
+ x°72 + x°70 + x"68 + x"65 + x760 + x"58 + x"57 + x"54 + x°53 + x"51 + x749 + x"47 + x"46 +
x~43 + x~39 + x738 + x~37 + x731 + x~30 + x729 + x728 + x724 + x722 + x~21 + x719 + x~18 + x
~17 + x~15 + x~11 + x"6 + x°5 + x + 1
[9]: [127, 49, 28] Cyclic Linear Code over GF(2)
CyclicCode of length 127 with generating polynomial x~78 + x777 + x°76 + x°74 + x°72 + x767 + x761
+ x760 + x°68 + x°B57 + x7°56 + x"B3 + x"52 + x748 + x"47 + x"45 + x743 + x742 + x°35 + x732 +
x~30 + x726 + x725 + x724 + x720 + x~19 + x~18 + x~16 + x~13 + x~712 + x710 + x5 + x"4 + x~3
+ x + 1
[10]: [147, 49, 34] Linear Code over GF(2)
ConstructionXX using [9] [8] [7] [6] and [4]
[11]: [148, 49, 34] Linear Code over GF(2)
ExtendCode [10] by 1

Listing 9: Recipe for constructing a LC[148, 49, 34] binary linear error-correcting code capable of correcting up
to 16 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).

Construction of a linear code [148,102,14] over GF(2):
[1]: [149, 104, 13] Linear Code over GF(2)
Using the construction of Sugiyama with x76 + a~57*x"5 + a~104*x"4 + a~37*x"3 + a~71%x72 + a~24xx
+ a“6 where a := PrimitiveElement (GF(2,7))
[2]: [150, 104, 14] Linear Code over GF(2)
ExtendCode [1] by 1
[3]: [148, 102, 14] Linear Code over GF(2)
Shortening of [2] at { 149 .. 150 }

Listing 10: Recipe for constructing a LC[148, 102, 14] binary linear error-correcting code capable of correcting
up to 6 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).
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Construction of a linear code [200,100,32] over GF(2):

[1]: [199, 100, 31] "Quadratic Residue code" Linear Code over GF(2)
QRCode over GF(2)of length 199

[2]: [200, 100, 32] Linear Code over GF(2)
ExtendCode [1] by 1

Listing 11: Recipe for constructing a LC[200, 100, 32] binary linear error-correcting code capable of correcting
up to 15 bit flips. Recipe taken from CodeTables.de (Grassl, 2006).
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D Augmentations used for robustness evaluation

Throughout the paper we use five different robustness measures, each corresponding to a set of
augmentations. In this section, we outline the specific augmentations that each robustness measure
consists of.

RivaGAN augmentations:

* Random crop with scale between 0.8 and 1.0 and with probability 0.5.

* Random scale with scale between 0.8 and 1.0 and with probability 0.5.

* Random compress by maintaining between 50% and 100% of the frequencies with probabil-
ity 0.5.

SSL augmentations:
* Random horizontal flip with probability 0.5.
Followed by one transform randomly sampled from the following list:

* Do nothing.

* Random rotation with range (-30, 30).

* Random crop with scale between 0.2 and 1.0 and ratios between 3/4 and 4/3.
* Random resize with scale ratio between 0.2 and 1.0.

e Random blur with kernel of maximum size 17.

Trustmark Low augmentations:

* Random horizontal flip with probability 0.5.

* Random resized crop with scale between 0.7 and 1.0 and ratios between 3/4 and 4/3.
Followed by two transforms randomly sampled from the following list:

* JPEG compression with quality 70 and with probability 0.5.

* Random brightness adjustment to range (0.9, 1.1) with probability 0.5.

* Random contrast adjustment to range (0.9, 1.1) with probability 0.5.

* Random color jiggle with factor (0.05, 0.05, 0.05, 0.01) and with probability 0.5.

* Random grayscale with probability 0.5.

* Random Gaussian blur with kernel size 3, sigma (0.1, 1.0) and with probability 0.5.
* Random Gaussian noise with std 0.02 and with probability 0.5.

* Random hue adjustment with factor (-0.1, 0.1) and with probability 0.5.

* Random motion blur with kernel size (3,5), angle (-25, 25), direction (-0.25, 0.25) and with
probability 0.5.

* Random posterize to 5 bits with probability 0.5.

* Random RGB shift with limit for all channels 0.02 and with probability 0.5.
* Random saturation to range (0.9, 1.1) and with probability 0.5.

* Random sharpness to 1.0 and with probability 0.5.

* Random median blur with kernel size 3 and with probability 0.5.

* Random box blur with kernel size 3, border type reflect and with probability 0.5.
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Trustmark Medium augmentations:

* Random horizontal flip with probability 0.5.

* Random resized crop with scale between 0.7 and 1.0 and ratios between 3/4 and 4/3.
Followed by two transforms randomly sampled from the following list:

* JPEG compression with quality 50 and with probability 0.5.

* Random brightness adjustment to range (0.75, 1.25) with probability 0.5.

* Random contrast adjustment to range (0.75, 1.25) with probability 0.5.

* Random color jiggle with factor (0.1, 0.1, 0.1, 0.02) and with probability 0.5.

* Random grayscale with probability 0.5.

* Random Gaussian blur with kernel size 5, sigma (0.1, 1.5) and with probability 0.5.
* Random Gaussian noise with std 0.04 and with probability 0.5.

* Random hue adjustment with factor (-0.2, 0.2) and with probability 0.5.

* Random motion blur with kernel size (3,7), angle (-45, 45), direction (-0.5, 0.5) and with
probability 0.5.

* Random posterize to 4 bits with probability 0.5.

* Random RGB shift with limit for all channels 0.05 and with probability 0.5.

¢ Random saturation to range (0.75, 1.25) and with probability 0.5.

¢ Random sharpness to 1.5 and with probability 0.5.

* Random median blur with kernel size 3 and with probability 0.5.

* Random box blur with kernel size 5, border type reflect and with probability 0.5.

Trustmark High augmentations:

* Random horizontal flip with probability 0.5.

* Random resized crop with scale between 0.7 and 1.0 and ratios between 3/4 and 4/3.
Followed by two transforms randomly sampled from the following list:

* JPEG compression with quality 40 and with probability 0.5.

* Random brightness adjustment to range (0.5, 1.5) with probability 0.5.

* Random contrast adjustment to range (0.5, 1.5) with probability 0.5.

* Random color jiggle with factor (0.1, 0.1, 0.1, 0.05) and with probability 0.5.

* Random grayscale with probability 0.5.

* Random Gaussian blur with kernel size 7, sigma (0.1, 2.0) and with probability 0.5.
* Random Gaussian noise with std 0.08 and with probability 0.5.

* Random hue adjustment with factor (-0.5, 0.5) and with probability 0.5.

* Random motion blur with kernel size (3,9), angle (-90, 90), direction (-1, 1) and with
probability 0.5.

* Random posterize to 3 bits with probability 0.5.

* Random RGB shift with limit for all channels 0.1 and with probability 0.5.
* Random saturation to range (0.5, 1.5) and with probability 0.5.

* Random sharpness to 2.5 and with probability 0.5.

* Random median blur with kernel size 3 and with probability 0.5.

* Random box blur with kernel size 7, border type reflect and with probability 0.5.
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E Residuals of various watermarking methods

Clean Image wiked_dutdct mked_dwidctsvd mked_hidden wimked_rivagan mked_rosteals wmked_ss1_42_30 wimked_trustmark 8_0.95 wiked_trustmark Q_0.95
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Figure 9: Residuals (difference between the watermarked and the original image) for the 8 watermarking
methods studied in the paper. The difference is computed in the RGB space and is scaled 10x. One can observe
clear differences in how the different methods perturb the images in order to encode their signal.

22
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Figure 10: Residuals (difference between the watermarked and the original image) for the 8 watermarking
methods studied in the paper. The difference is computed in the YCbCr space and is scaled 10x. One can observe
clear differences in how the different methods perturb the images in order to encode their signal.
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Figure 11: Fourier transform of the residuals (difference between the watermarked and the original image)
for the 8 watermarking methods studied in the paper. The difference is computed in the RGB space, the 2D
Fourier transform is applied channel-wise, the channels are then scaled with o(z) = log(1 4 abs(z)) and finally
normalized to lie between 0 and 255 for producing the images. One can observe clear differences in how the
different methods perturb the images in order to encode their signal.
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F Extended results

First method  Second method ECC Ensemble Clip Capacity Accuracy Mean Std  Robust. Robust. Robust. Robust. Robust.
(bits) PSNR [dB] PSNR [dB] RivaGAN SSL TmLow TmMed TmHigh

DwtDct DwtDct - parallel 0.5 64 0.0% 38.7 4.1 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct DwtDect - parallel - 64 0.0% 38.7 4.1 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct DwtDct - series 0.5 64 0.0% 40.7 23 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct DwtDct - series - 64 0.0% 40.5 22 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct DwtDctSvd - parallel 0.5 64 10.0% 39.4 4.5 2.9% 0.9% 0.0% 0.0% 0.0%
DwtDct DwtDctSvd - parallel - 64 10.0% 39.4 4.5 2.5% 1.3% 0.0% 0.0% 0.0%
DwtDct DwtDctSvd - series 0.5 64 52.9% 39.8 2.5 12.6% 5.8% 0.0% 0.0% 0.0%
DwtDct DwtDctSvd - series - 64 57.2% 39.1 2.0 13.3% 6.4% 0.0% 0.0% 0.0%
DwtDct HiDDeN - parallel 0.5 80 0.2% 372 39 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct HiDDeN - parallel - 80 0.2% 37.0 4.0 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct HiDDeN - series 0.5 80 0.6% 355 35 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDct HiDDeN - series - 80 6.9% 32,0 4.1 1.8% 1.1% 0.0% 0.0% 0.0%
DwtDct - - - - 32 51.0% 383 3.8 12.7% 6.4% 0.0% 0.1% 0.0%
DwtDet RivaGAN - parallel 0.5 64 15.6% 41.6 23 4.3% 1.7% 0.0% 0.0% 0.0%
DwtDct RivaGAN - parallel - 64 15.6% 41.5 24 4.2% 2.4% 0.0% 0.0% 0.0%
DwtDct RivaGAN - series 0.5 64 34.5% 39.7 2.1 8.4% 3.3% 0.0% 0.0% 0.0%
DwtDct RivaGAN - series - 64 43.9% 36.1 2.6 10.4% 5.1% 0.0% 0.0% 0.0%
DwtDct RoSteALS - parallel 0.5 132 2.5% 36.3 34 0.9% 0.3% 0.0% 0.0% 0.0%
DwtDct RoSteALS - parallel - 132 2.5% 36.2 34 0.7% 0.3% 0.0% 0.0% 0.0%
DwtDct RoSteALS - series 0.5 132 7.0% 348 33 1.7% 0.7% 0.0% 0.0% 0.0%
DwtDct RoSteALS - series - 132 35.1% 30.4 35 8.3% 4.8% 0.0% 0.0% 0.0%
DwtDct SSL (42dB,30bits) - series 0.5 62 39.1% 40.2 2.1 9.4% 4.8% 0.0% 0.0% 0.0%
DwtDct SSL (42dB,30bits) - series - 62 49.5% 36.5 29 11.9% 6.5% 0.1% 0.0% 0.0%
DwtDct Trustmark B (0.95) - parallel 0.5 132 2.2% 41.8 2.6 0.7% 0.2% 0.0% 0.0% 0.0%
DwtDct Trustmark B (0.95) - parallel - 132 2.2% 41.7 2.6 0.6% 0.2% 0.0% 0.0% 0.0%
DwtDct Trustmark B (0.95) - series 0.5 132 20.1% 39.7 24 4.4% 2.6% 0.0% 0.0% 0.0%
DwtDct Trustmark B (0.95) - series - 132 49.7% 36.2 2.8 12.9% 5.7% 0.0% 0.0% 0.0%
DwtDct Trustmark Q (0.95) - parallel 0.5 132 1.8% 42.1 2.7 0.6% 0.2% 0.0% 0.0% 0.0%
DwtDct Trustmark Q (0.95) - parallel - 132 1.8% 42.1 2.8 0.5% 0.3% 0.0% 0.0% 0.0%
DwtDct Trustmark Q (0.95) - series 0.5 132 15.9% 40.3 25 3.6% 1.4% 0.0% 0.0% 0.0%
DwtDct Trustmark Q (0.95) - series - 132 49.5% 36.6 3.0 13.2% 5.6% 0.0% 0.0% 0.0%
DwtDetSvd DwtDect - series 0.5 64 41.7% 39.8 25 11.5% 4.7% 0.0% 0.0% 0.1%
DwtDctSvd DwtDct - series - 64 46.4% 39.1 19 11.8% 4.8% 0.0% 0.0% 0.0%
DwtDctSvd DwtDctSvd - parallel 0.5 64 0.0% 38.8 43 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd DwtDctSvd - parallel - 64 0.0% 38.8 43 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd DwtDctSvd - series 0.5 64 0.0% 41.5 24 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd DwtDctSvd - series - 64 0.0% 41.5 23 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd HiDDeN - parallel 0.5 80 0.1% 371 3.8 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd HiDDeN - parallel - 80 0.1% 37.0 4.0 0.0% 0.0% 0.0% 0.0% 0.0%
DwtDctSvd HiDDeN - series 0.5 80 23% 354 35 0.5% 0.2% 0.0% 0.0% 0.0%
DwtDctSvd HiDDeN - series - 80 11.6% 31.8 39 2.6% 1.7% 0.0% 0.0% 0.0%
DwtDetSvd - - - - 32 85.0% 383 39 203%  15.5% 0.3% 0.2% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel -0.2 36 55.5% 413 23 13.8% 9.7% 0.1% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel -0.1 36 55.5% 413 23 12.9%  10.0% 0.2% 0.3% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel 0 36 55.5% 413 23 13.6% 9.0% 0.0% 0.1% 0.0%
DwtDctSvd RivaGAN ~ LC[64,36,12]  parallel 0.1 36 555% 413 23 14.5% 9.4% 0.1% 0.0% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 0.2 36 55.5% 41.3 2.3 14.5% 10.6% 0.1% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 0.3 36 55.5% 413 23 13.8% 10.9% 0.1% 0.0% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 0.4 36 55.5% 413 23 13.2% 9.0% 0.0% 0.1% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 0.5 36 55.4% 41.4 22 14.7% 9.8% 0.1% 0.1% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 0.6 36 55.3% 415 22 13.9% 9.4% 0.1% 0.2% 0.2%
DwtDetSvd RivaGAN  LC[64,36,12] parallel 0.7 36 55.2% 41.5 2.0 13.3% 8.8% 0.3% 0.1% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel 0.8 36 547% 41.7 19 14.1%  10.2% 0.1% 0.1% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel 0.9 36 54.0% 41.9 1.8 12.9% 9.9% 0.0% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel 1 36 53.0% 42.1 1.8 12.3% 8.9% 0.2% 0.1% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12]  parallel 1.1 36 51.8% 423 1.7 13.0% 9.2% 0.0% 0.0% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] parallel 1.2 36 50.2% 42.6 1.7 12.5% 8.9% 0.0% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] parallel - 36 55.5% 413 23 14.1% 10.0% 0.1% 0.4% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series  -0.2 36 53.4% 37.3 33 13.1% 10.5% 0.2% 0.2% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] series  -0.1 36 54.0% 374 33 13.5% 10.2% 0.1% 0.2% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] series 0 36 54.6% 37.7 32 12.7% 9.5% 0.4% 0.1% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.1 36 54.3% 38.1 3.0 14.7% 9.7% 0.0% 0.1% 0.2%
DwtDetSvd RivaGAN  LC[64,36,12] series 0.2 36 53.3% 385 2.8 13.1% 9.3% 0.1% 0.2% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.3 36 54.7% 39.0 25 14.0%  10.0% 0.0% 0.1% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.4 36 542% 393 23 13.5% 8.8% 0.2% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.5 36 54.0% 39.7 2.1 14.1% 9.5% 0.1% 0.1% 0.2%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.6 36 53.4% 40.0 2.0 12.7% 9.3% 0.1% 0.0% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.7 36 52.6% 40.3 1.8 12.5% 10.4% 0.1% 0.1% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.8 36 52.1% 40.6 1.7 13.2% 9.1% 0.2% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 0.9 36 51.2% 41.0 1.8 13.1% 8.4% 0.0% 0.0% 0.2%
DwtDctSvd RivaGAN  LC[64,36,12] series 1 36 49.4% 413 1.8 12.0% 9.2% 0.0% 0.0% 0.0%
DwtDctSvd RivaGAN  LC[64,36,12] series 1.1 36 48.2% 41.6 1.8 12.1% 8.7% 0.1% 0.0% 0.1%
DwtDctSvd RivaGAN  LC[64,36,12] series 1.2 36 47.0% 42.0 1.8 12.0% 8.2% 0.1% 0.1% 0.0%
DwtDetSvd RivaGAN  LC[64,36,12] series - 36 53.4% 36.1 2.6 14.6%  10.4% 0.0% 0.2% 0.0%
DwtDctSvd RivaGAN - parallel 0.5 64 345% 41.4 22 9.3% 4.9% 0.0% 0.0% 0.0%
DwtDctSvd RivaGAN - parallel - 64 345% 413 23 8.8% 5.0% 0.0% 0.0% 0.0%
DwtDctSvd RivaGAN - series 0.5 64 32.8% 39.7 2.1 8.9% 4.7% 0.0% 0.1% 0.0%
DwtDctSvd RivaGAN - series - 64 36.4% 36.1 2.6 9.8% 6.9% 0.0% 0.0% 0.0%
DwtDctSvd RoSteALS - parallel 0.5 132 52% 36.3 34 1.1% 0.8% 0.0% 0.0% 0.0%
DwtDctSvd RoSteALS - parallel - 132 52% 36.2 34 1.8% 0.6% 0.0% 0.0% 0.0%
DwtDctSvd RoSteALS - series 0.5 132 2.0% 348 34 0.5% 0.1% 0.0% 0.0% 0.0%
DwtDctSvd RoSteALS - series - 132 3.0% 30.4 35 1.0% 0.4% 0.0% 0.0% 0.0%
DwtDctSvd  SSL (42dB,30bits) - series 0.5 62 62.1% 40.1 2.1 15.2% 8.8% 0.0% 0.0% 0.1%
DwtDctSvd  SSL (42dB,30bits) - series - 62 80.2% 36.4 2.8 197%  14.0% 0.0% 0.1% 0.2%
DwtDctSvd Trustmark B (0.95) - parallel 0.5 132 4.9% 41.5 25 1.1% 0.9% 0.0% 0.0% 0.0%
DwtDctSvd Trustmark B (0.95) - parallel - 132 5.0% 41.5 2.6 1.5% 0.7% 0.0% 0.0% 0.0%
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First method  Second method ECC Ensemble Clip Capacity Accuracy Mean Std  Robust. Robust. Robust. Robust. Robust.
(bits) PSNR [dB] PSNR [dB] RivaGAN SSL TmLow TmMed TmHigh

DwtDctSvd Trustmark B (0.95) - series 0.5 132 269% 39.7 25 6.7% 3.7% 0.0% 0.0% 0.0%
DwtDctSvd Trustmark B (0.95) - series - 132 79.5% 36.0 2.8 19.4%  13.5% 0.2% 0.2% 0.0%
DwtDctSvd Trustmark Q (0.95) - parallel 0.5 132 4.2% 41.9 27 1.2% 1.1% 0.0% 0.0% 0.0%
DwtDctSvd Trustmark Q (0.95) - parallel - 132 4.3% 41.9 2.8 1.4% 0.7% 0.1% 0.0% 0.0%
DwtDctSvd Trustmark Q (0.95) - series 0.5 132 22.9% 40.3 2.6 5.8% 3.2% 0.0% 0.1% 0.0%
DwtDctSvd Trustmark Q (0.95) - series - 132 76.9% 36.5 3.0 19.3% 11.9% 0.1% 0.0% 0.1%
HiDDeN DwtDct - series 0.5 80 1.0% 355 35 0.1% 0.1% 0.0% 0.0% 0.0%
HiDDeN DwtDct - series - 80 8.6% 31.5 39 2.8% 1.0% 0.0% 0.0% 0.0%
HiDDeN DwtDctSvd - series 0.5 80 1.5% 35.5 35 0.3% 0.1% 0.0% 0.0% 0.0%
HiDDeN DwtDetSvd - series - 80  132% 315 39 32% 1.5% 0.0% 0.0% 0.0%
HiDDeN HiDDeN - parallel 0.5 96 0.0% 332 4.8 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN HiDDeN - parallel - 96 0.0% 332 4.8 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN HiDDeN - series 0.5 96 0.0% 32.6 45 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN HiDDeN - series - 96 0.0% 30.8 4.1 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN - - - - 48 15.0% 327 4.5 5.3% 1.9% 0.1% 0.0% 0.1%
HiDDeN RivaGAN - series 0.5 80 0.3% 36.7 23 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN RivaGAN - series - 80 9.4% 31.8 3.8 2.4% 1.2% 0.0% 0.0% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series -0.2 49 81.6% 30.2 38 38.8% 16.5% 0.2% 0.1% 0.2%
HiDDeN RoSteALS  LC[148,49,34] series -0.1 49 80.5% 30.4 3.8 40.1% 18.1% 0.2% 0.2% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 0 49 79.2% 30.7 3.8 35.5% 14.3% 0.1% 0.1% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series 0.1 49 783% 31.0 3.8 37.9% 15.1% 0.0% 0.0% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 0.2 49 77.6% 312 3.8 359% 15.1% 0.0% 0.2% 0.2%
HiDDeN RoSteALS  LC[148,49,34] series 0.3 49 75.6% 315 3.8 35.0%  14.0% 0.0% 0.1% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series 0.4 49 723% 317 3.8 34.1%  143% 0.1% 0.1% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series 0.5 49 70.6% 320 38 33.6% 12.8% 0.1% 0.1% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 0.6 49 68.5% 323 38 31.3% 12.3% 0.0% 0.0% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 0.7 49 66.7% 325 3.8 30.3% 12.8% 0.1% 0.2% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series 0.8 49 65.0% 328 3.9 29.2% 10.7% 0.1% 0.2% 0.2%
HiDDeN RoSteALS  LC[148,49,34] series 0.9 49 62.9% 33.0 4.0 29.1% 11.9% 0.2% 0.1% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 1 49 61.0% 333 4.0 27.9% 10.7% 0.0% 0.0% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 1.1 49 58.8% 335 4.1 27.9%  10.8% 0.1% 0.0% 0.0%
HiDDeN RoSteALS  LC[148,49,34] series 1.2 49 56.9% 33.8 42 26.7% 9.7% 0.0% 0.0% 0.1%
HiDDeN RoSteALS  LC[148,49,34] series - 49 85.6% 28.8 3.8 40.8%  16.4% 0.1% 0.3% 0.3%
HiDDeN RoSteALS - series 0.5 148 0.0% 32,0 3.8 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN RoSteALS - series - 148 1.8% 28.8 3.8 1.0% 0.1% 0.0% 0.0% 0.0%
HiDDeN SSL (42dB,30bits) - series 0.5 78 0.1% 373 2.3 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN  SSL (42dB,30bits) - series - 78 14.4% 320 39 4.7% 1.4% 0.1% 0.0% 0.0%
HiDDeN Trustmark B (0.95) - parallel 0.5 148 0.0% 37.9 35 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark B (0.95) - parallel - 148 0.0% 37.7 39 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark B (0.95) - series 0.5 148 0.1% 36.9 3.0 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark B (0.95) - series - 148 12.5% 31.9 4.0 4.2% 1.7% 0.0% 0.0% 0.0%
HiDDeN Trustmark Q (0.95) - parallel 0.5 148 0.0% 38.2 35 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark Q (0.95) - parallel - 148 0.0% 37.9 4.0 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark Q (0.95) - series 0.5 148 0.0% 37.5 3.1 0.0% 0.0% 0.0% 0.0% 0.0%
HiDDeN Trustmark Q (0.95) - series. - 148 10.4% 32.1 4.2 3.2% 1.3% 0.1% 0.0% 0.0%
RivaGAN DwtDct - series 0.5 64 38.5% 39.7 2.1 10.8% 4.1% 0.0% 0.0% 0.1%
RivaGAN DwtDct - series - 64 43.3% 36.0 2.6 11.0% 5.8% 0.1% 0.0% 0.0%
RivaGAN DwtDctSvd ~ LC[64,36,12] series  -0.2 36 85.0% 37.3 34 20.5% 15.3% 0.4% 0.2% 0.2%
RivaGAN DwtDctSvd  LC[64,36,12] series  -0.1 36 84.5% 375 34 19.9% 17.6% 0.1% 0.2% 0.2%
RivaGAN DwtDctSvd  LC[64,36,12] series 0 36 84.2% 37.8 33 19.6% 16.1% 0.3% 0.1% 0.0%
RivaGAN DwtDetSvd  LC[64,36,12] series 0.1 36 82.8% 382 3.0 19.6% 15.2% 0.2% 0.2% 0.2%
RivaGAN DwtDetSvd  LC[64,36,12] series 0.2 36 81.5% 385 27 20.1%  15.0% 0.1% 0.1% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.3 36 78.7% 39.0 25 212%  15.4% 0.2% 0.4% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.4 36 77.1% 393 23 18.6%  13.5% 0.2% 0.2% 0.2%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.5 36 74.8% 39.6 2.1 18.7%  13.6% 0.1% 0.1% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.6 36 72.7% 39.9 1.9 18.5%  13.9% 0.3% 0.1% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.7 36 70.1% 40.2 1.7 16.2% 11.3% 0.3% 0.2% 0.2%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.8 36 67.1% 40.6 1.8 16.5% 12.5% 0.1% 0.1% 0.0%
RivaGAN DwtDctSvd  LC[64,36,12] series 0.9 36 64.0% 40.9 1.8 15.1% 10.6% 0.1% 0.1% 0.2%
RivaGAN DwtDctSvd  LC[64,36,12] series 1 36 61.3% 413 1.8 15.4% 11.0% 0.1% 0.2% 0.0%
RivaGAN DwtDctSvd  LC[64,36,12] series 1.1 36 58.7% 41.6 1.9 16.3% 10.1% 0.1% 0.2% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series 1.2 36 55.9% 42.0 2.0 13.1%  10.5% 0.1% 0.1% 0.1%
RivaGAN DwtDctSvd  LC[64,36,12] series - 36 86.9% 36.0 2.6 212%  162% 0.2% 0.1% 0.0%
RivaGAN DwtDctSvd - series 0.5 64 57.3% 39.6 2.1 13.9% 8.8% 0.0% 0.0% 0.0%
RivaGAN DwtDctSvd - series - 64 69.9% 36.0 2.6 172%  11.8% 0.1% 0.1% 0.0%
RivaGAN HiDDeN - parallel 0.5 80 0.2% 37.9 3.1 0.0% 0.0% 0.0% 0.0% 0.0%
RivaGAN HiDDeN - parallel - 80 0.2% 37.6 3.7 0.1% 0.0% 0.0% 0.0% 0.0%
RivaGAN HiDDeN - series 0.5 80 0.5% 36.7 23 0.1% 0.1% 0.0% 0.0% 0.0%
RivaGAN HiDDeN - series - 80 11.9% 31.8 3.8 3.7% 1.5% 0.0% 0.0% 0.0%
RivaGAN - - - - 32 75.8% 40.8 0.6 729%  29.3% 28.7% 27.3% 24.8%
RivaGAN RivaGAN - parallel 0.5 64 0.0% 42.6 0.9 0.0% 0.0% 0.0% 0.0% 0.0%
RivaGAN RivaGAN - parallel - 64 0.0% 42.6 0.9 0.0% 0.0% 0.0% 0.0% 0.0%
RivaGAN RivaGAN - series 0.5 64 0.0% 40.7 0.7 0.0% 0.0% 0.0% 0.0% 0.0%
RivaGAN RivaGAN - series - 64 0.0% 37.8 12 0.0% 0.0% 0.0% 0.0% 0.0%
RivaGAN RoSteALS LC[131,32,37]  parallel -0.2 32 974% 36.4 3.0 51.6%  28.4% 0.2% 0.0% 0.2%
RivaGAN RoSteALS LC[131,32,37]  parallel -0.1 32 974% 36.4 3.0 48.9%  28.7% 0.4% 0.4% 0.4%
RivaGAN RoSteALS LC[131,32,37] parallel 0 32 97.4% 36.4 3.0 523%  27.7% 0.4% 0.4% 0.4%
RivaGAN RoSteALS  LC[131,32,37] parallel 0.1 32 97.4% 36.4 3.0 48.3%  29.3% 0.3% 0.7% 0.2%
RivaGAN RoSteALS LC[131,32,37] parallel 0.2 32 97.4% 36.4 3.0 48.2%  27.8% 0.3% 0.3% 0.4%
RivaGAN RoSteALS LC[131,32,37] parallel 0.3 32 97.4% 36.4 3.0 51.4%  29.2% 0.3% 0.2% 0.3%
RivaGAN RoSteALS LC[131,32,37] parallel 0.4 32 97.0% 36.5 29 49.0%  28.3% 0.6% 0.2% 0.1%
RivaGAN RoSteALS LC[131,32,37] parallel 0.5 32 94.9% 36.8 25 49.1%  29.0% 0.1% 0.5% 0.2%
RivaGAN RoSteALS LC[131,32,37]  parallel 0.6 32 90.7% 373 2.0 46.8%  25.7% 0.5% 0.2% 0.3%
RivaGAN RoSteALS LC[131,32,37]  parallel 0.7 32 85.0% 38.1 1.5 42.9%  22.5% 0.3% 0.2% 0.2%
RivaGAN RoSteALS LC[131,32,37]  parallel 0.8 32 798% 39.0 1.1 40.6%  21.9% 0.4% 0.3% 0.1%
RivaGAN RoSteALS  LC[131,32,37]  parallel 0.9 32 745% 39.9 0.9 372%  20.0% 0.1% 0.0% 0.2%
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First method  Second method ECC Ensemble Clip Capacity Accuracy Mean Std  Robust. Robust. Robust. Robust. Robust.
(bits) PSNR [dB] PSNR [dB] RivaGAN SSL TmLow TmMed TmHigh

RivaGAN RoSteALS  LC[131,32,37]  parallel 1 32 672% 40.8 0.7 32.4%  19.4% 0.1% 0.3% 0.2%
RivaGAN RoSteALS LC[131,32,37]  parallel 1.1 32 59.6% 41.8 0.8 302%  16.8% 0.0% 0.1% 0.1%
RivaGAN RoSteALS LC[131,32,37]  parallel 1.2 32 53.1% 42.7 1.0 26.4%  15.4% 0.3% 0.1% 0.0%
RivaGAN RoSteALS LC[131,32,37] parallel - 32 97.4% 36.4 3.0 48.7%  29.3% 0.2% 0.3% 0.5%
RivaGAN RoSteALS  LC[131,32,37] series  -0.2 32 99.5% 31.0 34 51.1%  31.0% 0.6% 0.5% 0.8%
RivaGAN RoSteALS LC[131,32,37] series  -0.1 32 99.5% 31.0 35 51.5%  31.3% 0.2% 0.4% 0.4%
RivaGAN RoSteALS LC[131,32,37] series 0 32 99.5% 313 3.6 50.9%  30.9% 0.4% 0.5% 0.2%
RivaGAN RoSteALS LC[131,32,37] series 0.1 32 99.1% 323 32 499%  32.1% 0.5% 0.5% 0.2%
RivaGAN RoSteALS LC[131,32,37] series 0.2 32 98.5% 332 29 51.2%  31.0% 0.2% 0.3% 0.4%
RivaGAN RoSteALS  LC[131,32,37] series 0.3 32 96.9% 342 2.6 49.4%  28.7% 0.4% 0.4% 0.3%
RivaGAN RoSteALS  LC[131,32,37] series 0.4 32 95.0% 35.1 22 472%  273% 0.4% 0.3% 0.3%
RivaGAN RoSteALS  LC[131,32,37] series 0.5 32 91.7% 36.1 1.9 47.7%  25.4% 0.2% 0.3% 0.3%
RivaGAN RoSteALS  LC[131,32,37] series 0.6 32 87.6% 37.0 1.6 44.7%  24.4% 0.3% 0.4% 0.3%
RivaGAN RoSteALS  LC[131,32,37] series 0.7 32 82.9% 38.0 1.2 43.0%  22.9% 0.2% 0.2% 0.3%
RivaGAN RoSteALS LC[131,32,37] series 0.8 32 77.2% 389 1.0 384%  21.0% 0.3% 0.1% 0.3%
RivaGAN RoSteALS LC[131,32,37] series 0.9 32 T1.7% 39.9 0.8 35.2% 19.3% 0.2% 0.2% 0.3%
RivaGAN RoSteALS  LC[131,32,37] series 1 32 65.3% 40.8 0.7 32.5% 16.5% 0.2% 0.0% 0.1%
RivaGAN RoSteALS LC[131,32,37] series 1.1 32 58.1% 41.7 0.7 27.1% 16.0% 0.1% 0.2% 0.1%
RivaGAN RoSteALS  LC[131,32,37] series 1.2 32 51.6% 42.7 0.9 24.8% 13.1% 0.1% 0.0% 0.1%
RivaGAN RoSteALS  LC[131,32,37] series - 32 99.4% 30.9 33 51.4%  29.8% 0.4% 0.3% 0.6%
RivaGAN RoSteALS - parallel 0.5 132 4.3% 36.8 25 2.3% 0.7% 0.0% 0.0% 0.0%
RivaGAN RoSteALS - parallel - 132 4.3% 36.4 3.0 2.1% 0.9% 0.0% 0.0% 0.0%
RivaGAN RoSteALS - series 0.5 132 5.9% 36.1 1.9 2.4% 0.7% 0.0% 0.0% 0.0%
RivaGAN RoSteALS - series - 132 24.0% 30.9 33 10.7% 5.6% 0.0% 0.0% 0.0%
RivaGAN SSL (42dB,30bits) - series 0.5 62 63.7% 41.4 0.6 50.9%  20.7% 13.9% 11.8% 10.4%
RivaGAN SSL (42dB,30bits) - series - 62 69.9% 384 0.6 64.8%  24.7% 21.0% 19.1% 15.3%
RivaGAN Trustmark B (0.95) - parallel 0.5 132 2.9% 42.8 1.2 4.3% 0.7% 1.0% 1.4% 0.8%
RivaGAN Trustmark B (0.95) - parallel - 132 2.9% 42.8 1.2 4.3% 0.7% 1.0% 1.0% 1.1%
RivaGAN Trustmark B (0.95) - series 0.5 132 26.3% 40.9 1.1 28.4% 5.7% 9.8% 9.0% 8.1%
RivaGAN Trustmark B (0.95) - series - 132 68.0% 37.5 1.1 64.8% 18.9% 22.9% 21.4% 18.0%
RivaGAN Trustmark Q (0.95) - parallel 0.5 132 3.5% 433 12 4.1% 0.6% 1.1% 0.8% 0.6%
RivaGAN Trustmark Q (0.95) - parallel - 132 3.5% 433 12 4.2% 0.8% 0.7% 0.6% 0.4%
RivaGAN Trustmark Q (0.95) - series 0.5 132 21.6% 41.5 12 24.1% 5.1% 7.9% 6.6% 6.0%
RivaGAN Trustmark Q (0.95) - series - 132 67.2% 38.0 1.2 65.0%  16.3% 22.4%  20.9% 19.8%
RoSteALS DwtDct - series 0.5 132 13.4% 34.8 33 3.7% 1.1% 0.0% 0.0% 0.0%
RoSteALS DwtDct - series - 132 36.8% 304 34 9.7% 4.6% 0.0% 0.0% 0.0%
RoSteALS DwtDctSvd - series 0.5 132 16.0% 348 34 4.2% 2.7% 0.0% 0.0% 0.0%
RoSteALS DwtDctSvd - series - 132 65.1% 30.4 34 16.1% 11.3% 0.0% 0.1% 0.0%
RoSteALS HiDDeN LC[148,102,14] series 1 102 21.5% 333 4.0 8.2% 3.2% 0.0% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel -0.2 49 60.0% 345 3.7 28.2% 10.5% 0.1% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel -0.1 49 60.0% 345 3.7 28.1% 10.9% 0.1% 0.0% 0.0%
RoSteALS HiDDeN LC[148,49,34]  parallel 0 49 60.0% 345 37 264%  10.2% 0.0% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34]  parallel 0.1 49 60.0% 345 37 262%  10.6% 0.1% 0.0% 0.0%
RoSteALS HiDDeN LC[148,49,34]  parallel 0.2 49 60.0% 345 37 254%  10.6% 0.0% 0.0% 0.0%
RoSteALS HiDDeN LC[148,49,34]  parallel 0.3 49 60.0% 345 37 27.1% 9.6% 0.0% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel 0.4 49 60.0% 345 3.7 27.0% 11.7% 0.0% 0.0% 0.1%
RoSteALS HiDDeN LC[148,49,34] parallel 0.5 49 60.0% 345 3.7 25.6% 10.1% 0.1% 0.0% 0.1%
RoSteALS HiDDeN  LC[148,49,34] parallel 0.6 49 60.0% 345 3.7 26.4% 11.7% 0.0% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel 0.7 49 59.9% 345 3.7 25.4% 10.4% 0.0% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel 0.8 49 59.9% 345 3.7 25.6% 10.0% 0.2% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] parallel 0.9 49 59.4% 34.6 3.7 27.2% 10.8% 0.0% 0.0% 0.0%
RoSteALS HiDDeN LC[148,49,34]  parallel 1 49 58.6% 34.7 37 253%  10.1% 0.0% 0.1% 0.0%
RoSteALS HiDDeN LC[148,49,34]  parallel 1.1 49 58.0% 34.8 3.8 25.0%  10.4% 0.0% 0.0% 0.1%
RoSteALS HiDDeN LC[148,49,34]  parallel 1.2 49 573% 349 3.8 25.3% 9.0% 0.0% 0.0% 0.1%
RoSteALS HiDDeN LC[148,49,34]  parallel - 49 60.0% 345 37 257%  11.6% 0.0% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series -0.2 49 91.9% 30.2 3.8 45.6%  20.2% 0.2% 0.2% 0.0%
RoSteALS HiDDeN LC[148,49,34] series  -0.1 49 91.0% 30.4 38 44.2% 19.1% 0.1% 0.2% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 0 49 89.9% 30.7 3.8 43.2% 19.2% 0.3% 0.2% 0.1%
RoSteALS HiDDeN  LC[148,49,34] series 0.1 49 89.4% 31.0 3.8 41.0%  21.6% 0.1% 0.1% 0.1%
RoSteALS HiDDeN  LC[148,49,34] series 0.2 49 88.3% 31.2 3.7 44.1% 19.5% 0.2% 0.1% 0.3%
RoSteALS HiDDeN  LC[148,49,34] series 0.3 49 87.0% 31.5 3.8 41.2% 19.4% 0.1% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 0.4 49 85.1% 31.7 3.8 42.4%  17.7% 0.1% 0.0% 0.2%
RoSteALS HiDDeN  LC[148,49,34] series 0.5 49 81.6% 32,0 3.8 389% 17.6% 0.1% 0.2% 0.1%
RoSteALS HiDDeN  LC[148,49,34] series 0.6 49 79.7% 323 3.8 37.8% 16.1% 0.1% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 0.7 49 78.4% 325 3.8 37.0%  15.5% 0.2% 0.1% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 0.8 49 75.6% 32.8 39 36.8%  15.4% 0.0% 0.1% 0.2%
RoSteALS HiDDeN  LC[148,49,34] series 0.9 49 73.3% 33.0 4.0 34.7% 14.6% 0.0% 0.0% 0.2%
RoSteALS HiDDeN LC[148,49,34] series 1 49 72.2% 333 4.0 34.5% 14.4% 0.2% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 1.1 49 69.4% 335 4.1 35.1% 13.1% 0.1% 0.2% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series 1.2 49 66.8% 338 42 30.1% 12.7% 0.1% 0.0% 0.0%
RoSteALS HiDDeN  LC[148,49,34] series - 49 94.9% 28.7 3.8 47.1%  24.5% 0.2% 0.3% 0.2%
RoSteALS HiDDeN - parallel 0.5 148 0.0% 345 3.7 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS HiDDeN - parallel - 148 0.0% 345 37 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS HiDDeN - series 0.5 148 0.2% 32,0 3.8 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS HiDDeN - series - 148 7.0% 28.7 3.8 1.9% 1.1% 0.0% 0.0% 0.0%
RoSteALS - LC[100,32,25] - - 32 99.9% 314 3.6 504%  31.7% 0.4% 0.5% 0.5%
RoSteALS - LC[100,48,20] - - 48 99.9% 314 3.6 50.0%  31.6% 0.3% 0.4% 0.4%
RoSteALS - - - - 100 72.1% 31.4 3.6 354% 22.1% 0.1% 0.1% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series  -0.2 32 99.9% 30.8 34 50.0%  30.6% 0.5% 0.8% 0.5%
RoSteALS RivaGAN  LC[131,32,37] series 0.1 32 99.8% 30.9 35 522%  30.5% 0.4% 0.7% 0.5%
RoSteALS RivaGAN  LC[131,32,37] series 0 32 99.9% 31.3 3.6 51.7%  31.2% 0.5% 0.4% 0.3%
RoSteALS RivaGAN  LC[131,32,37] series 0.1 32 99.8% 323 33 51.8%  32.0% 0.4% 0.4% 0.6%
RoSteALS RivaGAN  LC[131,32,37] series 0.2 32 99.5% 332 29 51.9%  312% 0.6% 0.3% 0.3%
RoSteALS RivaGAN  LC[131,32,37] series 0.3 32 98.8% 342 2.6 50.0%  30.8% 0.5% 0.4% 0.2%
RoSteALS RivaGAN  LC[131,32,37] series 0.4 32 97.1% 35.1 22 492%  29.6% 0.3% 0.3% 0.4%
RoSteALS RivaGAN  LC[131,32,37] series 0.5 32 944% 36.1 1.9 48.9%  27.5% 0.3% 0.3% 0.1%
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RoSteALS RivaGAN  LC[131,32,37] series 0.6 32 88.7% 37.0 1.6 43.0%  24.3% 0.0% 0.2% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series 0.7 32 832% 38.0 1.2 433%  22.1% 0.1% 0.1% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series 0.8 32 77.9% 389 1.0 40.1%  22.3% 0.1% 0.2% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series 0.9 32 71.4% 39.9 0.8 37.4% 19.4% 0.0% 0.1% 0.2%
RoSteALS RivaGAN  LC[131,32,37] series 1 32 64.7% 40.8 0.7 33.7% 16.8% 0.1% 0.1% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series 1.1 32 55.3% 41.8 0.7 27.0% 15.8% 0.2% 0.0% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series 1.2 32 49.2% 42.7 0.9 23.9% 14.8% 0.1% 0.2% 0.1%
RoSteALS RivaGAN  LC[131,32,37] series - 32 99.9% 30.7 3.1 54.6%  28.3% 0.5% 0.4% 0.5%
RoSteALS RivaGAN - series 0.5 132 8.0% 36.1 1.9 4.0% 1.8% 0.0% 0.0% 0.0%
RoSteALS RivaGAN - series - 132 42.9% 30.7 3.1 22.5% 9.3% 0.0% 0.0% 0.0%
RoSteALS RoSteALS - parallel 0.5 200 0.0% 322 3.6 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS RoSteALS - parallel - 200 0.0% 322 3.6 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS RoSteALS - series 0.5 200 0.0% 313 3.6 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS RoSteALS - series - 200 0.0% 27.8 32 0.0% 0.0% 0.0% 0.0% 0.0%
RoSteALS SSL (42dB,30bits) LC[130,100,10] series 0.2 100 86.8% 335 29 43.8%  21.6% 0.4% 0.1% 0.0%
RoSteALS SSL (42dB,30bits) - series 0.5 130 20.0% 36.7 1.9 8.3% 4.0% 0.0% 0.1% 0.0%
RoSteALS SSL (42dB,30bits) - series - 130 66.8% 30.9 33 32.5% 16.6% 0.0% 0.1% 0.1%
RoSteALS Trustmark B (0.95) - parallel 0.5 200 4.6% 36.6 3.0 1.8% 1.0% 0.0% 0.0% 0.0%
RoSteALS Trustmark B (0.95) - parallel - 200 4.7% 36.4 32 2.7% 1.6% 0.0% 0.0% 0.0%
RoSteALS Trustmark B (0.95) - series 0.5 200 5.8% 36.3 2.7 2.6% 1.9% 0.0% 0.0% 0.0%
RoSteALS Trustmark B (0.95) - series - 200 48.5% 30.8 33 257%  14.7% 0.0% 0.1% 0.0%
RoSteALS Trustmark Q (0.95) - parallel 0.5 200 2.5% 36.9 29 1.2% 0.6% 0.0% 0.0% 0.0%
RoSteALS Trustmark Q (0.95) - parallel - 200 3.0% 36.5 32 1.6% 0.8% 0.0% 0.0% 0.0%
RoSteALS Trustmark Q (0.95) - series 0.5 200 5.3% 36.8 2.8 3.1% 1.2% 0.0% 0.0% 0.0%
RoSteALS Trustmark Q (0.95) - series - 200 50.2% 30.8 34 24.9% 16.5% 0.0% 0.2% 0.0%

SSL (42dB,30bits) DwtDct - parallel 0.5 62 9.4% 423 2.6 2.7% 0.9% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDct - parallel - 62 9.4% 423 2.7 2.3% 0.9% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDct - series 0.5 62 25.6% 40.2 2.1 7.1% 3.3% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDct - series - 62 32.0% 36.5 2.8 7.8% 2.8% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDctSvd - parallel 0.5 62 21.5% 42.2 25 6.1% 22% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDetSvd - parallel - 62 21.5% 42.1 27 5.1% 1.9% 0.0% 0.0% 0.0%
SSL (42dB,30bits) DwtDctSvd - series 0.5 62 46.8% 40.2 2.1 12.3% 6.9% 0.0% 0.0% 0.1%
SSL (42dB,30bits) DwtDctSvd - series - 62 64.0% 36.4 2.8 15.4% 9.2% 0.0% 0.1% 0.0%
SSL (42dB,30bits) HiDDeN - parallel 0.5 78 0.1% 383 3.1 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) HiDDeN - parallel - 78 0.3% 37.9 3.8 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) HiDDeN - series 0.5 78 0.1% 374 2.3 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) HiDDeN - series - 78 5.1% 320 39 1.4% 0.6% 0.0% 0.0% 0.0%
SSL (42dB,30bits) - - - - 30 93.8% 42.1 0.6 86.1%  75.8% 58.0% 52.2% 47.9%
SSL (42dB,30bits) RivaGAN - parallel 0.5 62 27.8% 43.7 0.5 11.6% 4.3% 1.5% 1.0% 1.1%
SSL (42dB,30bits) RivaGAN - parallel - 62 27.8% 43.7 0.5 10.7% 4.3% 0.9% 1.0% 0.4%
SSL (42dB,30bits) RivaGAN - series 0.5 62 53.4% 41.5 0.6 32.8% 12.8% 6.1% 4.2% 3.7%
SSL (42dB,30bits) RivaGAN - series - 62 64.5% 38.4 0.5 51.4%  17.5% 11.7%  10.8% 8.2%
SSL (42dB,30bits) RoSteALS - parallel 0.5 130 8.0% 373 25 2.7% 1.4% 0.0% 0.0% 0.0%
SSL (42dB,30bits) RoSteALS - parallel - 130 8.2% 36.8 32 3.1% 1.2% 0.0% 0.0% 0.0%
SSL (42dB,30bits) RoSteALS - series 0.5 130 2.3% 36.7 1.9 0.7% 0.4% 0.0% 0.0% 0.0%
SSL (42dB,30bits) RoSteALS - series - 130 15.6% 309 33 5.7% 22% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - parallel 0.5 60 0.0% 442 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - parallel - 60 0.0% 442 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - series 0.5 60 0.0% 42.1 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - series 0.5 60 0.0% 42.1 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - series - 60 0.0% 39.1 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) SSL (42dB,30bits) - series - 60 0.0% 39.1 0.6 0.0% 0.0% 0.0% 0.0% 0.0%
SSL (42dB,30bits) Trustmark B (0.95) - parallel 0.5 130 5.3% 43.8 1.1 2.8% 1.6% 1.2% 0.8% 0.5%
SSL (42dB,30bits) Trustmark B (0.95) - parallel - 130 5.3% 43.8 1.1 3.1% 1.6% 1.4% 0.8% 0.7%
SSL (42dB,30bits) Trustmark B (0.95) - series 0.5 130 354% 41.7 1.0 282%  16.3% 13.8%  12.3% 9.5%
SSL (42dB,30bits) Trustmark B (0.95) - series - 130 77.7% 384 1.2 68.8%  41.5% 43.0%  36.7% 32.7%
SSL (42dB,30bits) Trustmark Q (0.95) - parallel 0.5 130 2.5% 443 1.1 2.0% 1.2% 0.5% 0.5% 0.4%
SSL (42dB,30bits) Trustmark Q (0.95) - parallel - 130 2.5% 443 1.1 2.1% 1.0% 0.4% 0.5% 0.5%
SSL (42dB,30bits) Trustmark Q (0.95) - series 0.5 130 352% 423 1.2 28.3% 14.2% 13.4% 11.1% 9.0%
SSL (42dB,30bits) Trustmark Q (0.95) - series - 130 77.3% 39.0 1.2 66.8%  37.6% 40.5% 34.9% 31.8%
Trustmark B (0.95) DwtDct - series 0.5 132 20.5% 39.7 24 4.7% 2.5% 0.0% 0.0% 0.0%
Trustmark B (0.95) DwtDct - series - 132 49.3% 36.2 2.8 11.3% 5.4% 0.1% 0.0% 0.0%
Trustmark B (0.95) DwtDctSvd - series 0.5 132 26.7% 39.7 25 6.4% 4.2% 0.1% 0.0% 0.0%
Trustmark B (0.95) DwtDctSvd - series - 132 88.5% 36.0 2.8 233%  16.4% 0.3% 0.1% 0.4%
Trustmark B (0.95) HiDDeN - series 0.5 148 0.0% 36.9 3.0 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) HiDDeN - series - 148 132% 31.9 4.0 4.8% 1.4% 0.0% 0.0% 0.1%
Trustmark B (0.95) - - - - 100 96.5% 413 2.1 96.9%  67.9% 85.2% 83.1% 79.4%
Trustmark B (0.95) RivaGAN - series 0.5 132 24.3% 40.9 1.1 27.2% 6.2% 9.4% 8.5% 6.6%
Trustmark B (0.95) RivaGAN - series - 132 73.9% 375 1.1 72.6%  20.1% 26.7% 26.7% 21.4%
Trustmark B (0.95) RoSteALS - series 0.5 200 4.2% 36.2 2.7 1.9% 1.1% 0.0% 0.0% 0.0%
Trustmark B (0.95) RoSteALS - series - 200 31.1% 30.7 33 15.6% 9.1% 0.0% 0.0% 0.0%
Trustmark B (0.95) SSL (42dB,100bits) LC[200,100,32] series 1 100 80.6% 42.5 1.1 67.4%  39.3% 40.8% 37.9% 32.9%
Trustmark B (0.95) SSL (42dB,100bits) - series 1 200 22.9% 42.5 1.1 11.4% 6.2% 2.1% 2.6% 2.4%
Trustmark B (0.95) SSL (42dB,30bits) - series 0.5 130 45.7% 41.7 1.0 42.8%  22.4% 21.9%  202% 18.1%
Trustmark B (0.95) SSL (42dB,30bits) - series - 130 92.9% 38.4 1.1 88.7%  54.1% 61.1%  53.8% 48.6%
Trustmark B (0.95) Trustmark B (0.95) - parallel 0.5 200 0.0% 42.0 2.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) Trustmark B (0.95) - parallel - 200 0.0% 42.0 2.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) Trustmark B (0.95) - series 0.5 200 0.0% 41.4 22 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) Trustmark B (0.95) - series - 200 0.0% 38.0 2.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) Trustmark Q (0.95) - series 0.5 200 0.1% 41.9 22 0.1% 0.0% 0.0% 0.0% 0.0%
Trustmark B (0.95) Trustmark Q (0.95) - series - 200 0.1% 38.6 23 0.2% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.40) - LC[100,32,25] - - 32 49.6% 479 1.8 54.0%  30.7% 40.5% 38.3% 36.0%
Trustmark Q (0.45) - LC[100,32,25] - - 32 655% 473 19 70.5%  41.3% 54.9%  51.7% 48.5%
Trustmark Q (0.50) - LC[100,32,25] - - 32 802% 46.8 2.0 83.5%  51.8% 68.4%  64.3% 60.9%
Trustmark Q (0.55) - LC[100,32,25] - - 32 88.9% 46.2 2.0 91.0%  58.7% 77.1%  73.8% 70.5%
Trustmark Q (0.60) - LC[100,32,25] - - 32 95.1% 45.7 2.1 95.9%  64.0% 832%  81.3% 76.7%
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Trustmark Q (0.60) RivaGAN  LC[131,32,37] series  -0.2 32 853% 39.8 0.9 86.5%  38.7% 524%  49.2% 46.9%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.1 32 81.7% 40.1 0.8 83.5%  36.3% 48.6%  45.7% 41.8%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0 32 753% 40.7 0.7 78.5%  33.0% 42.1%  39.8% 36.5%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.1 32 69.9% 41.3 0.6 72.7%  28.0% 36.0% 34.1% 31.3%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.2 32 63.6% 41.7 0.8 67.4%  22.6% 32.1% 30.6% 25.4%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.3 32 58.3% 422 0.9 62.8%  22.3% 26.8% 26.0% 23.7%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.4 32 51.0% 42.6 1.0 55.0% 17.0% 23.5% 21.4% 18.5%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.5 32 41.3% 432 1.2 44.0% 13.1% 17.1% 15.7% 15.9%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.6 32 35.1% 43.6 1.3 39.6% 12.4% 15.5% 14.2% 12.4%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.7 32 33.0% 44.0 1.5 37.6%  11.0% 142%  13.1% 12.8%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.8 32 295% 44.6 1.8 33.6% 9.7% 11.8%  11.3% 10.6%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 0.9 32 265% 45.1 2.0 27.9% 8.3% 9.9% 9.1% 7.9%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 1 32 225% 45.6 2.1 23.5% 6.7% 8.5% 7.7% 6.2%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 1.1 32 17.7% 46.0 23 17.8% 5.0% 6.9% 5.5% 5.0%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series 1.2 32 14.3% 46.5 24 14.8% 4.7% 5.0% 5.3% 4.7%
Trustmark Q (0.60) RivaGAN  LC[131,32,37] series - 32 94.2% 39.0 0.8 95.0%  46.1% 59.8% 57.7% 53.2%
Trustmark Q (0.65) - LC[100,32,25] - - 32 97.8% 452 2.1 98.0%  65.1% 87.1% 85.0% 82.8%
Trustmark Q (0.70) - LC[100,32,25] - - 32 98.7% 44.7 22 98.8%  66.8% 89.2% 87.6% 85.6%
Trustmark Q (0.75) - LC[100,32,25] - - 32 99.6% 44.2 22 99.5%  68.9% 89.8% 88.8% 86.7%
Trustmark Q (0.80) - LC[100,32,25] - - 32 99.6% 43.7 23 99.5%  69.7% 90.9% 89.1% 87.6%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series -0.2 32 95.9% 39.9 0.9 96.5%  50.5% 66.5%  63.8% 61.6%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.1 32 95.6% 40.3 0.9 96.1%  47.3% 63.5%  61.1% 59.0%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0 32 954% 40.6 0.8 96.1%  46.5% 62.1%  58.5% 55.4%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.1 32 93.7% 41.0 0.8 94.2%  47.1% 58.9%  56.6% 54.2%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.2 32 92.6% 41.3 0.8 94.1%  44.5% 57.3% 55.8% 52.3%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.3 32 92.2% 41.6 1.0 94.0%  42.8% 56.1% 53.3% 50.0%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.4 32 88.7% 419 1.1 90.6%  40.5% 52.1% 48.7% 45.3%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.5 32 86.0% 42.1 1.2 882%  37.3% 49.5% 44.5% 42.4%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.6 32 83.4% 425 1.4 86.6%  35.0% 46.1% 42.1% 39.3%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.7 32 81.3% 42.8 1.5 84.1%  32.1% 41.5% 39.4% 36.7%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.8 32 784% 43.1 1.7 80.9%  29.0% 40.7%  37.5% 34.4%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 0.9 32 743% 43.4 19 78.4%  28.0% 36.0%  33.5% 30.4%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 1 32 71.3% 43.7 2.1 742%  25.8% 34.0%  32.1% 28.8%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 1.1 32 66.6% 44.0 23 69.5%  24.5% 33.7%  28.3% 26.2%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series 1.2 32 61.4% 44.4 2.5 65.1%  21.8% 27.6% 26.4% 22.8%
Trustmark Q (0.80) RivaGAN  LC[131,32,37] series - 32 99.6% 384 1.0 99.7%  59.7% 75.2% 73.8% 71.6%
Trustmark Q (0.85) - LC[100,32,25] - - 32 99.8% 433 23 99.6%  69.8% 91.3% 90.3% 89.0%
Trustmark Q (0.90) - LC[100,32,25] - - 32 99.8% 429 23 99.6%  70.1% 91.4% 90.9% 89.0%
Trustmark Q (0.95) DwtDct - series 0.5 132 15.9% 40.3 25 3.9% 1.8% 0.0% 0.0% 0.0%
Trustmark Q (0.95) DwtDct - series - 132 48.4% 36.6 3.0 12.6% 6.1% 0.0% 0.0% 0.0%
Trustmark Q (0.95) DwtDetSvd - series 0.5 132 23.0% 40.3 2.6 6.5% 4.6% 0.0% 0.0% 0.0%
Trustmark Q (0.95) DwtDctSvd - series - 132 843% 36.4 3.0 19.5%  14.3% 0.2% 0.1% 0.2%
Trustmark Q (0.95) HiDDeN - series 0.5 148 0.0% 375 3.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) HiDDeN - series - 148 11.4% 32.1 4.1 3.7% 1.5% 0.0% 0.0% 0.0%
Trustmark Q (0.95) - LC[100,32,25] - - 32 99.9% 42.5 2.4 99.8%  70.3% 922%  90.9% 89.8%
Trustmark Q (0.95) - - - - 100 93.7% 42.5 24 94.8%  62.6% 81.0% 77.8% 74.3%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series -0.2 32 99.6% 39.9 1.1 99.5%  56.8% 73.8% 70.1% 68.2%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series  -0.1 32 99.4% 40.1 1.0 99.2%  53.9% 72.7% 69.7% 66.5%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0 32 99.1% 40.4 1.0 99.2%  552% 71.4% 69.9% 66.0%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.1 32 99.2% 40.7 1.0 98.9%  552% 69.7% 67.4% 64.5%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.2 32 99.2% 40.9 1.0 98.5%  53.2% 67.5% 65.7% 62.7%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.3 32 992% 41.1 1.1 99.0%  52.2% 67.4%  66.8% 62.8%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.4 32 98.7% 413 12 982%  51.0% 66.4%  63.9% 61.7%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.5 32 97.9% 41.5 12 97.7%  50.2% 64.4%  63.0% 55.7%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.6 32 974% 41.8 1.3 97.5%  46.7% 61.9%  60.6% 56.0%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.7 32 96.7% 42.0 1.5 96.5%  45.8% 61.3%  58.1% 53.9%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.8 32 95.6% 422 1.6 95.6%  44.8% 57.6% 57.6% 52.5%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 0.9 32 94.4% 42.5 1.8 94.3%  43.1% 56.4% 54.3% 48.8%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 1 32 92.8% 42.7 1.9 93.3%  40.3% 53.4% 51.7% 48.9%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 1.1 32 91.3% 429 21 92.0%  41.6% 51.6% 50.3% 47.4%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series 1.2 32 89.7% 432 22 90.0%  36.8% 50.3% 47.3% 45.1%
Trustmark Q (0.95) RivaGAN  LC[131,32,37] series - 32 99.9% 38.0 1.1 100.0%  59.6% 813%  77.5% 75.3%
Trustmark Q (0.95) RivaGAN - series 0.5 132 173% 41.5 12 20.0% 3.8% 6.1% 5.1% 4.4%
Trustmark Q (0.95) RivaGAN - series - 132 67.3% 38.0 1.1 66.1%  16.8% 24.6%  22.5% 18.8%
Trustmark Q (0.95) RoSteALS - series 0.5 200 1.1% 36.8 2.8 0.3% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) RoSteALS - series - 200 14.5% 30.8 34 7.5% 4.4% 0.0% 0.0% 0.0%
Trustmark Q (0.95) SSL (42dB,30bits) - series 0.5 130 35.5% 423 1.2 33.4% 15.9% 14.7% 14.5% 12.6%
Trustmark Q (0.95) SSL (42dB,30bits) - series - 130 85.4% 39.0 1.1 833%  45.8% 54.8% 49.5% 44.5%
Trustmark Q (0.95) Trustmark B (0.95) - parallel 0.5 200 0.0% 43.1 2.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark B (0.95) - parallel - 200 0.0% 43.1 2.1 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark B (0.95) - series 0.5 200 0.0% 41.9 22 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark B (0.95) - series - 200 0.0% 38.7 22 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark Q (0.95) - parallel 0.5 200 0.0% 42.9 23 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark Q (0.95) - parallel - 200 0.0% 42.9 23 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark Q (0.95) - series 0.5 200 0.0% 42.5 23 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (0.95) Trustmark Q (0.95) - series - 200 0.0% 39.0 2.4 0.0% 0.0% 0.0% 0.0% 0.0%
Trustmark Q (1.00) - LC[100,32,25] - - 32 99.9% 42.1 24 99.8%  71.3% 92.0% 91.1% 90.1%



Table 2: The residuals of all the methods we considered are close to orthogonal. This is also visible from
the samples in App. E: the residuals are visually different in RGB, YCbCr and Fourier space. This table shows
the angles in degrees (computed in RGB space) between the 8 residuals (differences between the watermarked
image and the cover image) for the first image in App. E (the credit card).

RivaGAN DwtDct HiDDeN SSL  TrustMark Q TrustMark B RoSteALS DwtDctSvd
RivaGAN 0.000000  89.999997  89.999999  89.999998 89.999998 89.999995  89.999999  90.000000
DwtDct 89.999997 0.000000  89.999995  89.999995 89.999997 89.999999  89.999994 89.999997
HiDDeN 89.999999  89.999995 0.000000  89.999994 89.999998 89.999994  89.999998 89.999999
SSL 89.999998  89.999995  89.999994  0.000000 89.999997 89.999999  89.999995 89.999999
TrustMark Q 89.999998  89.999997  89.999998  89.999997 0.000000 89.999996  89.999996 89.999996
TrustMark B 89.999995  89.999999  89.999994  89.999999 89.999996 0.000000  89.999995 89.999995
RoSteALS 89.999999  89.999994  89.999998  89.999995 89.999996 89.999995 0.000000 89.999997
DwtDctSvd 90.000000  89.999997  89.999999  89.999999 89.999996 89.999995  89.999997 0.000000

Table 3: Applying three watermarking methods. The results on coexistence extend to three watermarking
methods. As expected, the more watermarks applied to the same image, the more the image quality and decoding
robustness go down. The bit accuracy remains high (>88%) but the PSNR goes down to about 30dB.

Method 1 Method 2 Method 3

Method 1 Method 2 Method 3 Bit Acc. Bit Acc. Bit Acc. PSNR
DwtDct RivaGAN SSL 88.85% 99.97%  100.00% 30.60 dB
TrustMark Q DwtDct RivaGAN 98.97% 89.95% 99.97% 30.77 dB
TrustMark Q DwtDct SSL 97.88% 89.37% 100.00% 31.24 dB
TrustMark Q RivaGAN SSL 97.79% 99.94%  100.00% 31.96 dB
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NeurlIPS Paper Checklist

i.

ii.

iii.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction claim we study whether two watermarks can
coexist in the same image, something we show to be the case in Sec. 3, as well as how this
opens the avenue for ensembling, as discussed in Sec. 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our Discussion section (Sec. 5) focuses on the limitations of the present work.
Namely, that there is a need for a more comprehensive theoretical analysis following the
theoretical intuition we offered (App. A), the limited utility of ensembling of watermarking
methods (Sec. 4), as well as that we do not consider perceptual metrics, nor do we study
modalities other than images.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

Theory assumptions and proofs
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iv.

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: In App. A we offer an intuition of why watermarking coexistence occurs but
the present work does not have any formal proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We leverage existing and publicly available models and provide detailed
instructions on how to reproduce our experiments. While our dataset is proprietary and not
publicly available, the choice of dataset would have little impact on the results in this work.
We cannot provide code, but we provide sufficient instructions to reproduce all experimental
results. A Reproducibility statement is also included at the end of the main text.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

v. Open access to data and code

vi.

vii.

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Unfortunately, at this time, the data and code are proprietary, but we provide
sufficient instructions to reproduce all experimental results. We are also currently exploring
whether we can release an open-source version of the evaluation setup.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper constitutes no training of models and hence there are no training
details to be reported.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The accuracy and robustness are binary metrics and hence fully described by
reporting the mean values. For image quality metric (PSNR) we report mean and standard
deviation in the Extended Results tables in App. F.

Guidelines:

* The answer NA means that the paper does not include experiments.
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viii.

iX.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We only perform inference on relatively small models. Thre has been no
training of models in the scope of this work. Therefore, the compute costs are negligible.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have reviewed the NeurIPS Code of Ethics and our research conforms
to 1t.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper contains a dedicated Impact Statement at the end of the main text.
As this work studies a content provenance technology, we do not foresee any misuse or
negative societal impacts that need to be addressed.
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XI.

Xii.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work studies a content provenance technology, which in of itself is a
safeguarding tool. Therefore, no additional consideration of safeguarding is relevant.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The papers introducing the watermarking methods we evaluate in the present
work have been properly cited. We own and/or have a license to use all data used for the
experiments.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct any crowdsourcing experiments or research with human
subjects in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

xvi. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Beyond minor editing of the text of the paper, LLMs have not been used in
this work

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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