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Abstract

The image difference captioning (IDC) task is to describe
the distinctions between two images. However, existing
datasets do not offer comprehensive coverage across all
image-difference categories. In this work, we introduce a
high-quality dataset, DiffTell, with various types of image
manipulations, including global image alterations, object-
level changes, and text manipulations. Data quality is con-
trolled through careful human review and filtering. Addi-
tionally, to scale up the data collection without prohibitive
human labor costs, we explore the possibility of automati-
cally filtering for quality control. We demonstrate that both
traditional methods and recent multimodal large language
models (MLLMs) exhibit performance improvements on the
IDC task after training on the DiffTell dataset. Through ex-
tensive ablation studies, we provide a detailed analysis of
the performance gains attributed to DiffTell. Experiments
show DiffTell significantly enhances the availability of re-
sources for IDC research, offering a more comprehensive
foundation and benchmark for future investigations. The
dataset is available at https://huggingface.co/
datasets/zodil1121/DiffTell.

1. Introduction

Given the tremendous progress in image generation [51,
53], disseminating Al-modified fake images can lead to
widespread misinformation, erosion of public trust, and ma-
nipulation of public opinion on critical issues. Emerging
open standards, such as C2PA (Coalition for Content Prove-
nance and Authenticity, 2023), outline provenance frame-
works that utilize perceptual hashing techniques to link im-
ages found in the public domain with a federated database
of original content [7, 47]. Upon retrieving the source im-
age, image difference captioning (IDC) models can describe
the discrepancies between the circulated manipulated im-
age and its original, enabling individuals to make more in-
formed and nuanced trust assessments. The overview of
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the entire system is given in Appendix A. IDC has been re-
searched with various algorithms [17, 48, 59-61, 65, 73].
However, the image domain and the types of visual differ-
ences in the current IDC dataset are limited or small-scale,
as summarized in Table 1. This makes the generalization
ability of the current model unsatisfactory. Although some
datasets are larger, such as OneDiff [20], they tend to be
noisy and lack human verification. Thus, a comprehensive,
clean IDC dataset on a large scale is needed.

The IDC dataset consists of the data triplet, including
one image pair (the original and the manipulated) and one
language caption describing the difference between them.
The formal definition is given in Section 3.1. As shown in
Table 1, existing datasets focus either on domain-specific
images, such as Spot-the-diff [22], which uses frames of
the surveillance videos, or rendered scenes with limited ge-
ometric objects and change types (color, texture, add, drop,
remove) in CLEVR [46]. Even though image editing re-
quest (IER) has various types of editing on the real nat-
ural images, it is limited in volume (~ 4K) since man-
ual human editing is costly and time-consuming, making
it harder to scale up [59]. Given the development of gener-
ative Al and image editing technologies, language-guided
Al-manipulated image data have been created using data
triplets: the before-edited image, the after-edited image, and
the language editing request. InstructPix2Pix [9] leverages
GPT-3 [10] to scale up possible editing commands and re-
sort to prompt2prompt [ 1 8] for automatic editing. However,
we find that it has a high error rate exceeding 60%. Mag-
icBrush [74] provides 10K manually annotated real image
editing triplets with careful quality control, but only con-
tains local edits. It has showcased the importance of high-
quality data for language-guided image editing. Therefore,
we identify the need for an IDC dataset that is varied in ma-
nipulation types and maintains high quality on a large scale.

To better support research in image difference caption-
ing, we introduce the DiffTell dataset, specifically created
to encompass a broader range of editing types, including
both real and synthetic image pairs, while maintaining care-
ful quality control. We categorize image differences into
four categories: background change, local object change,
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Categories Domain

Dataset ‘ Size ‘ Real ‘ Syn. ‘ Human Annotation
CLEVR-Change [46] | 70K X v
Birds-to-Words [15] | 4.8K v X
Spot-the-Diff [23] 13K 4 X
IER [59] 4K v X
PSBattle [8] 100 v X
One-Diff [20] 316K | v v
DiffTell (Ours) 70K v v

N> NSNS X%

Local object
Local object
Local object

primitive shapes
Birds
top-down street view

Comprehensive varied natural images
Comprehensive varied natural images
Comprehensive | varied natural images & genAl
Comprehensive | varied natural images & genAl

Table 1. The comparison involves DiffTell and currently available datasets designed for the image difference captioning (IDC) task. “Real”
and “Syn.” signify the presence of real and synthetic images in the datasets, respectively. The term “comprehensive” category denotes that
the dataset can encompass all the categories outlined in Section 3.2. A more detailed existing dataset description is given in Appendix B.

text manipulation, and image style change from various
data sources. Examples of the DiffTell dataset are illus-
trated in Figure 1. We first include two accessible language-
guided image editing datasets InstructPix2Pix [9] and Mag-
icBrush [74]. We manually filtered out the noisy, low-
quality data in InstructPix2Pix. As text manipulation is crit-
ical in creating fake news, we enriched the text addition
and removal data by inpainting the text in MARIO-10M
images [12]. In addition, we extended the object addition
and removal by inpainting the COCO [33] dataset. All Al-
generated editing outcomes have passed the quality filtering
process. Moreover, since the labor cost of manual quality
filtering can be expensive when scaled up, we further de-
velop an automatic data filtering model to reduce the cost
and observed the benefit of such an auto filtering process
according to model captioning performance.

Multimodal large language model (MLLMs) have be-
come increasingly popular in the research community
due to their strong general-purpose capability. By link-
ing large language models (LLMs) with visual condition-
ing [38, 77], MLLMs have shown impressive results in nat-
ural instruction-following and visual reasoning capabilities.
Meanwhile, the DiffTell dataset can serve as a visual instruct
finetuning [38] step upon the multiple MLLM models. We
demonstrate the general improvement of IDC performance
using the DiffTell dataset on various baselines, indicating its
value and benefits. In summary, our contributions are

e Proposing the DiffTell dataset that includes various kinds
of changes with high-quality samples on a larger scale
than previous datasets;

e Proving DiffTell can boost the IDC on various baselines
on both IER and PSBattle datasets on various models;

e A detailed analysis of how the DiffTell dataset enhances
IDC in different editing categories;

e Probing the model-based data filtering given the fixed
amount of human-filtered data, allowing potential data
scale-up.

2. Related Work
2.1. Multimodal Large Language Models

With the development of visual encoder and its combina-
tion to large language models (LLMs), multimodal large
language models (MLLMs) [36, 37, 39, 77] show promis-
ing capability to understand images, accept text inputs, and
generate natural-language responses. Increasing the model
capacity and dataset size can generally improve the capabil-
ity of MLLMs [4, 14, 75]. Visual encoders [30, 31, 49] are
applied to encode visual information into visual tokens, pro-
viding input for the LLMs. Other strategies like expanding
the instruction-tuning dataset [34] and increasing the visual
resolution [4, 35, 69] can also improve the performance of
the MLLMs. Recently, MLLMs have been used to under-
stand fine-grained images, such as in local region under-
standing [13, 40]. Image difference captioning is closely
related to fine-grained image understanding with multiple-
image input.

2.2. Image Difference Captioning

As mentioned above, MLLMSs are used to understand the
local region. Image difference captioning (IDC) is more
challenging because the model needs to not only under-
stand each image correctly but also capture and identify
the difference between two images correctly and express
it precisely in language. In IDC, the caption aims to de-
scribe the differences between the images while ignoring
their commonalities. The first work on IDC, Spot-the-
Diff [23], categorizes different types of changes and uses
an LSTM-based network to model them. DUDA [45]
enhances the robustness against slight global changes by
analyzing image differences at the CNN semantic level
instead.  Viewpoint invariant encoders have been pro-
posed in M-VAM [57], VACC [27], and VARD [63] to
mitigate potential viewpoint differences, while [58] uses
bidirectional encoding to improve change localization and
NCT [64] aggregates neighboring features with a trans-
former. IDC-PCL [72] and CLIP4IDC [16] adopt BERT-
like training strategies to model the difference-captioning



language. SCORER [66] applies a self-supervised cross-
view representation reconstruction technique for difference
captioning. Recently, with the advancement of MLLMs,
more datasets have integrated the existing IDC dataset
to train powerful MLLMs with diverse capabilities. For
instance, LLaVA-OneVision [29] includes the CLEVR
dataset, and Mantis-Instruct [24] incorporates the Spot-the-
Diff dataset. [20] proposes OneDiff, a large-scale dataset in-
corperating several existing IDC dataset as well as the syn-
thetic data using ChatGPT.

2.3. Image Editing

One of the biggest challenges in IDC is the shortage of
high-quality, comprehensive datasets of paired images. The
development of the diffusion model [19] significantly im-
proves the quality and controllability of the generated im-
ages. By controlling the cross-attention, diffusion mod-
els can transform the image globally [53, 55]. Local edit-
ing depends on the fine-grained predicted or user-provided
mask, such as inpainting [2, 41, 43]. Different from the
image transformation and local editing, the input of the
instruction-guided image editing is in the command format
rather than the detailed description and mask [9]. DiffTell
significantly benefits from the progress in image generation
models [54], especially the local editing model, leverag-
ing their capabilities to enhance the quality and diversity of
the dataset. HQ-Edit introduces a high-quality instruction-
based image editing dataset with around 200,000 edit and a
scalable data collection pipeline leveraging advanced foun-
dation models [21].

3. Problem Formulation and Dataset Con-
struction

3.1. Problem Definition

For IDC problem, when presented with two similar im-
ages, denoted as I; and 5, our objective is to employ a
vision-language (VL) model, fy, to articulate the distinc-
tions between I; and I, in natural language. This can be
represented as: 17, 1, = fo(I1, I2), where Ty, p, represents
the descriptive caption text provided by the model regard-
ing the dissimilarities between the images, and 6 signifies
the model parameters within the VL model. The elements
I, I, and T7, 1, collectively form the constituents of each
sample within the IDC dataset.

3.2. IDC Categories

Considering that our main motivation is to alleviate the
misinformation and spreading of doctored images, we fo-
cus on the image pairs created by manipulation or editing
and exclude the pairs without any correlation or that cannot
be easily obtained by human/Al editing. To further con-
cretize the research problem, we categorize four image dif-

Data Collection Human Image Difference
Filtering Category
InstructPix2Pix Style
Make the harbor Background
park a dessert X Local Object
Text
Q Make her wear a
crown
Ccoco
Original Image Input Mask Inpainting Output
Added a Caption

v Remove a zebra

MARIO-10M
Original Tmage lnpul Mask

Inpainting Output

Grow Your Own
suluu uuu;l

x 100%
Text
Added a Caption
‘ ‘ /' Remove the text
USA DRINKING TEAM

MagicBrush GIER

Existing clean dataset, no filtering

Puta forest
to the side
of the field.

Add the
green tone
to the image

Figure 1. The data collection pipeline and the data distribution
regarding the image difference categories. The data collection in-
volves two steps. Initially, data is gathered from COCO, MARIO-
10M, InstructPix2Pix, MagicBrush, and GIER. For COCO and
MARIO-10M, an in-painting process is applied to the images with
the help of masks, and the labeling team subsequently filters out
unsuccessful cases. The three images are the original image, the
input mask, and the output from Firefly Generative Fill, from left
to right. In the second (lower) COCO example, where the scis-
sors remain unaltered, the labeling team excludes this case from
the dataset. Similarly, for the first (upper) MARIO-10M example,
although the text in green is removed, the generation model intro-
duces an additional element outlined in the red box, leading to the
exclusion of this example as well. In the case of InstructPix2Pix,
the labeling team verifies the alignment between image pairs and
language instructions. Instances with unsuccessful modification
(e.g., the dessert modification in the top example) are removed
from the dataset. For the MagicBrush and GIER datasets, there is
no need to filter the image as they have already undergone manual
filtering. The final stage involves compiling the filtered data, re-
sulting in the creation of the DiffTell dataset.

ference types as background change, local object modifi-
cation, style change and text manipulation. Background
change is alterations related to the background, such as re-
moving, adding, or changing the background of an image.
Text manipulation involves addition, removal, or modi-



fication of text within the original image. Local object
change is about object re-colorization, appearance editing,
object removal, insertion, or translation. Style change is the
artistic style change, such as realistic photo to painting, and
photo-realistic style change, such as adjusting the bright-
ness or tone. Existing datasets, such as IER, mainly include
the first three categories but lack text manipulation. How-
ever, text manipulation is crucial in our scope since some
text changes can flip the message of an image, leading to
fake news and forged messages. For example, the message
of a smiling face image can be changed from happiness to
sarcasm by adding the sentence “absolutely thrilled to be
overworked and underpaid.” Therefore, we put additional
effort into text manipulation data collection. The detailed
elaboration of each difference category is as follows.

3.3. Dataset Collection Pipeline

Based on the definition in Section 3.1, the triplet
(I1, I, Ty, 1,) reflecting the four categories given above
is the fundamental element to build an image difference
captioning (IDC) dataset. As the mirrored task of IDC,
the instruction-guided image editing dataset is consid-
ered, which provides (I1,I2, 77, 1,) exactly. We select
InstructPix2Pix [9], GIER [56], and MagicBrush [74] as
the subset of our dataset due to the editing types, dataset
sizes/qualities. The difference categories of those three
datasets are given in Table 2.

Most existing vision datasets only provide I; and its
corresponding annotations, like the object segmentation
mask or the object’s name. Empowering the generative
model [52, 71], we can remove an object from the image
to generate Io, although a quality check step is necessary
due to the limitation of the generative model. The differ-
ence caption 17, 1, can be generated based on the editing
operation from the generative model. For datasets only pro-
viding I;, such as COCO and MARIO-10M, we mainly fo-
cus on object change and text manipulation. For the genera-
tion of I5, we apply the inpainting model Firefly Generative
Fill' and the details of how to generate images are given in
Appendix I. 17, j, is based on the template Add <Text>
/ <Object> or Remove <Text> / <Object> de-
pending on the order of /; and I, which is determined by
a random number generator whose probability is 0.5. For
the datasets providing Iy, I> and 717, ;, without manually
filtering like InstructPix2Pix, we ask the labeling team to
filter them. We provide the details of each subset and the
annotation details below.

InstructPix2Pix [9] provides I, I» and 17, 1,, where
(I1, I1) are generated by StableDiffusion [53] in combina-

TAs a type of artificial intelligence that can translate text and other
inputs into extraordinary results, Firefly Generative Fill model can gen-
erate the image according to the image or text input and be accessed at
https://firefly.adobe.com.

Datasets ‘ Syn. Image ‘ F. Rate (%) ‘ Dataset Size
InstructPix2Pix v 35.13 17,592
GIER X 100.00 6,179
MagicBrush X 100.00 8,807
MARIO-10M X 26.86 30,903
COCO X 30.93 3,986
DiffTell | v \ - 67,589

Table 2. Summary of the source datasets from which we derived
our dataset. “Syn. Image” indicates whether the image domain
contains synthetic images, while the “F. rate” denotes the ratio
of images retained after manual filtering by our labeling team if
needed, which is equal to (100% - Rejection Rate).

tion with Prompt-to-Prompt, and T7, j, is produced by a
finetuned GPT-3 [10]. It is a large (450K+) dataset with
various image-difference categories thanks to the automated
process. However, the automated process occasionally mis-
matches the image pair and its corresponding instruction.
We present such a noisy sample in Figure 1. The instruction
“Make the harbor park a dessert” does not describe the dif-
ference between the image pair. To mitigate this, our label-
ing team meticulously reviews a subset to retain clear and
accurate samples. After reviewing 50,012 selected triplets
from the InstructPix2Pix dataset, we obtain 17,592 image
pairs covering background, style, and local object change.

GIER [56] also provides the (I1, I3, Ty, 1,) triplet, pre-
senting 6,179 image pairs. IER and GIER are both from
the same source and complementary to each other. More
specifically, they are both from the human Photoshop-edited
images based on the language editing instructions. GIER
is mostly characterized by its global tone and lighting edit-
ing. We employ these pairs along with expert annotations as
I, I, and T7, j, respectively, while standardizing the lan-
guage style by removing unnecessary politeness indicators
like “Please.”

MagicBrush [74] constitutes a high-quality dataset for
multi-turn image editing, meticulously curated through
manual filtering, providing (I1, I2, 17, 1,) triplets in high
quality, which can be used directly in IDC task. To adapt
this multi-turn editing to fit our framework, we segmented
it into several single-turn edits and randomized their order.
As a result, we incorporate 8,807 image pairs from Mag-
icbrush into DiffTell.

MARIO-10M [12]: Text manipulation data is gathered
based on MARIO-10M, a dataset offering rough segmenta-
tion masks and optical character recognition (OCR) results
for text within images. The dataset only provides I, and we
use FireFly Generative Fill to remove the masked text from
the images to generate /5 with the input of I; and its corre-
sponding mask. We apply mask dilation, enlarging the orig-
inal mask by 5 pixels to make the region of interest (ROI)
covered by the mask as much as possible. Our labeling team
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carefully verifies the resulting images to ensure that the text
is fully removed and there is no additional element added
in I, leading to the retention of 30,903 image pairs out of
115,059 in our dataset. For filtered image pairs (I3, I5), the
language templates 17, 1,, we use are “add text” or “remove
text,” depending on the order of the image pair. We also add
the OCR results to the caption, with examples given in Fig-
ure 1.

COCO [33]: Similar to MARIO-10M dataset, COCO
dataset only provides I; and we need to generate I and
T7,,1,- We initially generated masks for each instance from
the annotations in the training set. Different from MARIO-
10M, the mask cannot be used directly because some object
masks are tiny, while others occupy almost the entire im-
age, despite the object being the same. To ensure proper
object sizes, a mask filtering technique is applied, selecting
objects within a specific size range based on the distribution
of mask sizes within each class. For each class, we select
the images with the masks whose area is 50%-75% of the
largest area to ensure that the change within the image pairs
is obvious and meaningful while not occupying the full im-
age. This process results in a selection of 128,969 images
from an initial pool of 860,001. Similar to the MARIO-10M
approach, mask dilation is applied in case of potential detail
loss in polygon masks. Objects are in-painted using FireFly
Generative Fill, and the resulting images are scrutinized by
our labeling team, resulting in a final selection of 3,986 im-
age pairs out of 12,886 for our dataset. After getting the
image pairs with and without the object from inpainting,
we follow the language template in MARIO-10M, which
is add <object> or remove <object> as shown in
Figure 1. The COCO subset in DiffTell focuses on local
object change.

Quality Check Statistics We use LabelBox’ as our
crowd-sourcing platform. Each sample added to DiffTell
is initially labeled by an annotator and then reviewed by a
high-performing annotator selected by us. To identify high-
performing annotators, we have each annotator label 500
images to assess their understanding of the task, and we
manually evaluate their accuracy. The top 30% of anno-
tators are selected as high-performing and assist with the
review process on a larger scale. On average, the labeling
time is 56.73 seconds, while the reviewing time averages
72.44 seconds.

Rationality of Data Construction with Generative
Model Considering the circulated deceptive doctored im-
ages are usually edited by humans or Al, we also cre-
ate image pairs with human or Al manipulation. Instruct-
Pix2Pix, MagicBrush, MARIO-10M, and COCO are Al-
edited, while GIER is human-Photoshopped. And we can
control the type of difference in the dataset based on the
editing we applied, allowing future balancing and debiasing
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of various IDC categories.

Our work specifically focuses on image manipulation
difference captioning. In the existing image difference cap-
tioning datasets, the image pairs typically consist of one
real-world image and another that has been manipulated us-
ing software. Using only real-world images for pairs would
significantly constrain the scale and diversity of the dataset.

3.4. Dataset Analysis

Following the dataset collection, we conduct a statistical
analysis of the DiffTell dataset based on the four categories
in Section 3.2. The contribution to each editing category
within each subset of DiffTell is presented in Figure 1.
Background and image style changes are from GIER and
InstructPix2Pix. MARIO-10M is for text manipulation. Lo-
cal object change is from all the subsets except MARIO-
10M. Over 72.9% images’ resolution is 512 x 512. The
largest image is 1024 x 1024, which is over 10%. The ratio
of the images of other resolutions is less than 1.5%. The
average length of the difference description is 9.72 words.
The longest description contains 66 words, while the short-
est has 33 words. The mode of the description length is 9
words. The description length distribution, addional dataset
illustration, and how the labeling team works to filter the
data are provided in the Appendix I.

4. Experiments

4.1. Experiment Setup

Benchmark Datasets and Evaluation Metrics We con-
duct experiments on the IER dataset [59] and the PSBattle
dataset [8], which encompass a wide range of image edit-
ing differences. The PSBattle dataset is sourced from the
PSRequest channel on Reddit’, comprising 100 pairs of im-
ages, each associated with at least three captions depicting
image modifications [8]. For the out-of-distribution evalu-
ation using the existing IDC dataset, we employ Spot-the-
Diff [23] and CLEVR-DC [26], and the details are given in
Appendix G.

In the case of IER, we evaluate the performance on
the testing set by comparing models trained exclusively on
the IER training set and those trained on a combination
of the IER training set and the DiffTell dataset. There is
overlap between the GIER and IER datasets, and we ex-
clude the samples in GIER that also appear in the IER test-
ing set. For the PSBattle dataset, we adopt it as an out-
of-domain dataset to test the zero-shot capability of our
model. Aligned with prior captioning research, we employ
BLEU@4 [44] (B@4), METEOR [5] (M), CIDEr [67] (C),
and ROUGE-L [32] (R-L), SPICE [1] (S) and BertScore-
Fy [76] (B-F) as the evaluation metrics. In addition, we

3https://www.reddit.cor/r/photoshopbatties/
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Testing Set | |  CLIP4IDC | OpenFlamingo-3B | Fuyu-8B | LLaVA-Interleave-7B | Idefics3-8B |  Qwen2-VL-7B
| w/DiffTell | X A A ol ox v | X A v

BLEU®@4 | 5.65 8.84 4.45 6.49 4.85 9.59 6.09 11.06 1145 1729 1715 17.76

IER METEOR | 1023  13.54 | 1487  16.68 1184 1652 1405 17.35 1928  21.64 19.84 22,02

CIDEr 2252 2814 | 1580  21.04 | 23.67  41.05 | 2969  44.79 5306 6435 | 64.61 67.71

ROUGE-L | 2895 3684 | 2079 3136 | 28.10 3544 | 3267  37.21 3737 4186 | 4458 4535

BLEU®@4 | 0.00 3.08 | 235e4 212 138 2.15 2.60 4.13 537 5.87 5.06 533

pSBate | METEOR | 3.08 6.25 233 6.60 479 7.57 8.88 9.39 9.96 12.93 1068 1212

ate CIDEr 1.59 3.63 479 7.75 4.05 4.19 7.86 8.55 1135 1297 1429 16.66

ROUGE-L | 1383  21.22 1624 19.10 1223 13.73 1801 2109 2051 2211 | 2234 2291

Table 3. Comparison of the methods fine-tuned on IER training set with and without DiffTell. The testing sets are the IER testing set and
the PSBattle dataset. The results of SPICE and BertScore are given in Table 11 in Appendix F.

Style
Background
Text

Local Object

BLEU@4

IER Only IER+MARIO-10M IER+GIER 1ER+MagicBrush

Categories

IER+COCO IER+InstructP2P

Figure 2. Category-wise BLEU @4 comparison on IER testing set
using Qwen2-VL-7B trained with different subsets in DiffTell.

also conduct human evaluation. The results of human eval-
uation [25] are given in Appendix F.

Baselines and Implementation Details We implement
several baseline methods for IDC to comprehensively il-
lustrate the benefits of the DiffTell dataset, including both
IDC-specific and MLLM methods. For IDC-specific meth-
ods, we use CLIP4IDC [17]. For MLLM methods, we re-
port OpenFlamingo-3B [3], Fuyu-8B [6], Llave-Interleave-
8B [36], Idefics3-8B [28] and Qwen2-VL-7B [68] here. We
follow the instruction tuning methods to train the MLLMs.
Without further clarification, the prompt we use across all
the experiments is “What is the difference between two im-
ages?”. We also try the diverse instruction prompts, and the
results are given in Appendix E, but the difference is not
significant. The implementation details and the results of
more baselines [62, 64] are given in Appendix C.

4.2. Main Result

Quantitative Result We report the experiment results on
the IER testing set and PSBattle dataset with and without
DiffTell in Table 3. Results demonstrate DiffTell’s ability
to enhance performance across all evaluation metrics and
for all baseline methods, underscoring the contribution of
the DiffTell dataset on IDC. Notice that OpenFlamingo-3B
with an LLM backbone is less capable than CLIP4IDC
with a much smaller model size. We suspect that the
Flamingo model does not have direct modeling of the in-

teraction between the two images because each image fea-
ture is cross-attentioned by language tokens, and then the
language tokens will interact via causal attention. In con-
trast, in CLIP4IDC, the two image patch features extracted
by CLIP are fused using a transformer, which is a direct
information interaction among image tokens, serving as a
strong condition to guide the transformer decoder to gener-
ate the language that describes the visual difference. There
is no image encoder in the Fuyu model, and the image is
patched linearly to the transformer. Thus, Fuyu can accept
an image of arbitrary size, improving its capability to detect
tiny differences and small objects. This can be the reason
why Fuyu improves greatly after fine-tuning. For Llava-
Interleave-7B, the pre-trained interleaved dataset provides a
good knowledge base for the model to understand the con-
text with multiple image inputs. Thus, it outperforms the
IDC-specific model without DiffTell and can perform best
among all the baselines. Qwen2-VL-7B achieves the best
performance over all the comparison methods.

Qualitative Study We compare the prediction from
Qwen2-VL-7B models trained with and without DiffTell.
The visualization examples of IER and PSBattle testing set
are shown in Figures 3 and 4, respectively.

As depicted in Figure 3, the model demonstrates en-
hanced proficiency in describing local object changes, text
detection and recognition, background alterations, and im-
age style changes. Notably, in the local object change ex-
ample, the model accurately identifies the addition of a tiger
which is tiny. In addition, the model can describe the spa-
tial relationship in the text output. In the second example
of background change. Compared with the model with-
out DiffTell, the model can describe the general change and
the object unchanged, showing that the caption is generated
by not just learning the image manipulation, but recogniz-
ing and understanding the image. Furthermore, in the third
example depicting an image style change, the model with
DiffTell recognizes the color name and describes it. In the
text manipulation example, the model exhibits OCR capa-
bilities without relying on existing OCR techniques. More-
over, the model can recognize subtle and long text. In the



zero-shot testing scenario of PSBattle, it is crucial to ob-
serve the spatial capability is boost a lot by using DiffTell
dataset. Moreover, the model can observe the more changes
in addition to the most obvious one.

By analyzing the qualitative results, we find the model
trained with DiffTell have a obvious capability boost in
spatial relationship, tiny object recognition, complex text
OCR, geometric operations and complex change identifica-
tion which includes several changes between the two im-
ages. More examples are given in Appendix L.2.

<Local object change> <Background change>

W

w/ DiffTell: Remove the

w/ DiffTell: Add « 7iger in the

background. background and leave just the cat.
w/o DiffTell: Add a football to the w/o DiffTell: Remove the
mans hand. background.

GT: Add a tiger, Insert the tiger behind ~ GT: Remove all background
the man except for the cats face

<Image style change> <Text manipulation

———

w/ DiffTell: Add the text

w/ DiffTell: Change the color of the
sky. Pool Party.

w/o DiffTell: Add text.
GT: add text pool party

w/o DiffTell: Change the color of the
sky 7o blue.

GT: Change the color of the sky from
orange to blue, color the sky blue

Figure 3. Visual comparison that illustrates the impact of utilizing
the DiffTell dataset on Qwen2-VL-7B’s performance across four
distinct categories in the IER testing set. Our dataset demonstrates
its effectiveness in enhancing performance, especially in local ob-
ject description, text detection and recognition, spatial recognition,
and image style description. The text in green shows an obviously
precise expression over the text in red.

.7:“ Tl et P - el Bter !
w/ DiffTell: Change the bird on the lefi to a hamster w/ DiffTell: Remove the soldiers, Add a cartoon
w/o DiffTell: Replace the bird with a hamster. character, Add big eyes to the helicopter.
GT: The bird on the left has been replaced by a small, ~w/o DiffTell: Add eyes to the helicopter, Add a
furry animal. cartoon character in front of the helicopter.
GT: The soldiers entering the helicopter were
removed and replaced with a yellow creature.

Figure 4. The visual comparison illustrates the impact of utilizing
the DiffTell dataset on the Qwen2-VL-7B model’s performance in
the PSBattle dataset.

4.3. Ablation Study

Since DiffTell is a dataset with several subsets contributing
to different image difference categories, it is necessary to

| Be4 M C R-L S B-F,

IER 17.15 19.84 64.61 4458 18.73 90.17
+ InstructP2P | 16.52 21.11 66.23 46.00 19.90 90.28
+ OCR 16.02 21.09 62.00 46.00 20.63 90.27

+ MagicBrush | 16.24 20.68 59.31 4347 18.83 90.13
+COCO 15.66 20.66 59.92 4342 18.70 90.15

+ GIER 17.19 20.61 6697 45.62 19.92 90.41

+ DiffTell 17.76 22.02 67.71 46.35 21.86 90.48

Table 4. Results of IER testing set from Qwen2-VL-7B model
finetuned on different datasets.

study the contribution of each subset to the IDC perfor-
mance. We consider two parts: the contribution of each
subset to the general performance and the contribution of
each subset to each category. We show the performance on
the IER testing set from the Qwen2-VL-7B model finetuned
with the IER training set and each subset in DiffTell in Ta-
ble 4. Almost every subset can improve the performance,
and in summary, the DiffTell can boost the performance
further.

We show another ablation study on the category-wise
contribution. To better study the performance of each cate-
gory, we compute the statistics of the IER testing set based
on the category given in Section 3.2. The statistics are
given in Table 6 in the Appendix. Figure 2 provides an
overview of the contributions based on the IER testing set
and Qwen2-VL-7B of each subset in DiffTell to each cate-
gory, regarding BLEU@4. Compared to the model trained
exclusively on IER, the model trained on our subset de-
rived from MARIO-10M shows a notable performance im-
provement, benefiting from the versatility of words in var-
ious real-life scenarios. Our subset derived from GIER
contributes positively to overall performance, except for
text manipulation, where no such data exists in the GIER
dataset. The absence of background change data in the
MagicBrush dataset leads to a performance decrease in the
background change category. COCO, designed for local
object changes, enhances performance in this category. In
the InstructPix2Pix dataset, the lack of text data results in a
performance decrease. In summary, the subset belonging
to the specific categories can generally contribute to the
corresponding categories in the IER testing set.

4.4. Automatic Data Filtering

The cost of manual data filtering can become a bottleneck
when scaling up this dataset. To address this, we propose
an alternative automatic data filtering pipeline, as shown in
Figure 5. Using a dataset previously reviewed by humans,
we compile both accepted and rejected samples as the train-
ing set for a binary classifier. The classifier’s input consists
of features extracted by the Qwen2-VL-7B model, which
has been fine-tuned on the IDC task. This classifier can as-
sist annotators in more efficiently filtering the data.



Linear Quality
Classifier

}

Accepted / Rejected

The feature of
<EOS> |:|

Large Language Model

L The difference between <image> and <EOS>
- 1 <image> is Remove Text "The BEAR JEW”

Figure 5. The framework of the automatic data filtering pipeline.
The image pair and difference caption will be passed to the Open-
Flamingo model, and the output feature of <EOS> token will be
used for the classification of acceptance or rejection

Training Set | B@4 M C R S  B-F

IER 17.15 1984 64.61 4458 18.73 90.17
IER+ 10K (R) | 17.13 19.99 6431 44.60 1885 90.17
IER + 10K (C) | 17.21 20.56 68.53 45.18 19.48 90.39
IER + 10K (H) | 17.27 21.10 69.47 46.15 19.63 90.46

Table 5. The results of performance on IER testing set using the
MARIO-10M data with automatic classifier or not.

To validate the effectiveness of our pipeline, we train
a quality classifier on an annotator-validated subset of
MARIO-10M, comprising 10K accepted and 10K rejected
samples. We use an SVM as the classifier, splitting 16K
samples for training and 4K for testing, achieving an accu-
racy of 89.47%. The classifier is then applied to unseen
data from MARIO-10M, filtering 10K accepted samples.
This unseen data is newly in-painted using FireFly Gener-
ative Fill, as explained in Section 3.3, and generation stops
once 10K accepted samples are collected through the clas-
sifier. We compare the performance on IER dataset of the
IDC model (Qwen2-VL-7B) trained on three subsets from
MARIO-10M: 10K auto-filtered samples by classifier (C),
10K randomly selected samples (R), and 10K filtered sam-
ples by human (H). The randomly selected data is taken di-
rectly from the in-painted model without quality control,
while the manually filtered data is a subset of MARIO-10M
used in DiffTell. The results in Table 5 demonstrate that the
auto-filtered training data can achieve much better perfor-
mance than unfiltered data (random data), and be compa-
rable to human filtered training data. Such a result shows
the necessity of the filtering step in our designed pipeline
and highlights the classifier’s effectiveness and the potential
for scaling data collection using this auto-filtering pipeline.
More experiments and analysis are given in Appendix J.

4.5. Failure Cases

Although the model gains performance improvement in
IDC, there are still some cases where the model fails to
predict correctly. We illustrate the failure cases in Fig-
ure 6. The model may sometimes limit its predictions to
local changes rather than providing a comprehensive de-
scription. In the first example shown in Figure 6, the model

kit

w/ DiffTell: Swap their w/ DiffTell: Add a hat and a gun to the bird on the
mouths. right.

w/o DiffTell: Make the man v DiffTell: Add a hat and a gun.

in the back smile.

GT: The faces of the two
basketball players have been
swapped.

GT: Added Head hair in /efi eagle and cap and gun in
the right one.

Figure 6. Illustration of the failure cases from the model trained
with DiffTell. The examples are from Qwen2-VL-7B on PSBattle.

exclusively identifies the difference in the mouth from the
face, neglecting the other facial elements and the relation-
ship between the two faces. Although the model recognizes
the change in the second example, it produces an inaccurate
description. These shortcomings may result from the lim-
ited diversity in the dataset. A predominant portion of the
images in DiffTell originates from real-life scenarios. The
model struggles to capture surreal or fantastical composi-
tions, such as facial swaps, as the training data may not ad-
equately represent those instances. Following our method-
ology in creating DiffTell, incorporating more data sources
covering a wider range of fine-grained domains may help
the model to establish connections between objects and ac-
curately identify specific object categories.

5. Conclusion and Limitation

In this study, we introduce DiffTell, an extensive and high-
quality dataset for image difference captioning (IDC). This
dataset addresses the gaps in diversity and scale that were
previously present in the IDC task. Through comprehen-
sive experiments conducted on diverse testing sets and em-
ploying various baseline methods, we demonstrate the ef-
ficacy of our dataset in enhancing performance. Addition-
ally, we analyze to understand the improvement contributed
by each component of DiffTell to different image difference
categories. We aspire that DiffTell will play a significant
role in advancing the development of more sophisticated
multi-modality models for IDC and language-guided image
editing in the future. With DiffTell, the model capability in
spatial relationship, tiny object recognition, long text OCR
and complex change identifaction is enhanced. As for fu-
ture work, we find the current model cannot identify the
difference beyond the real images, like cartoons, science
fiction, etc., due to the lack of training data. We hope to uti-
lize the human-filtered data (acceptance and rejection) for
preference optimization [42, 50] to boost the performance.
We also plan to augment Chain-of-Thought [70] data into
DiffTell, possibly by training a model with RL, enabling the
thinking process for image difference prediction.
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Supplementary Material

Appendix

The supplementary material is composed as follows.

* Appendix A illustrates the motivation for designing the
different captioning models for content authenticity.

* Appendix B presents a detailed description of the existing
datasets in IDC.

* Appendix C gives the implementation details.

* Appendix D presents more baselines that are not included
in the main paper.

» Appendix E presents the details using various instruction
prompts.

* Appendix F presents the more results of SPICE and
BertScore-F; as well as the human evaluation.

* Appendix G presents the out-of-distribution (OOD) re-
sults using Spot-the-Diff and CLEVR-DC datasets.

* Appendix H presents the zero-shot or few-shot perfor-
mance on LLMs without being finetuned on IER testing
set.

* Appendix I discusses more about the dataset collection.

* Appendix J presents more experiments and analysis about
the automatic data filtering pipeline.

* Appendix K provides more details about PSBattle testing
set.

* Appendix L provides more visual results, including how
we filter the data, more successful cases, etc.

A. Motivation from Content Provenance and
Authenticity

Figure 7 shows the motivation to design the different cap-
tioning models to ensure the authenticity of the content,
which helps users decide where the image is from and what
is modified over its original version.

B. Existing Datasets

The most commonly used datasets in the IDC task are
CLEVR change [46], Spot-the-Diff [23], and Image Edit-
ing Request (IER) [59]. CLEVR change constitutes a siz-
able synthetic dataset characterized by moderate viewpoint
variations. Spot-the-Diff is composed of pairs of frames ex-
tracted from video surveillance footage and the correspond-
ing textual descriptions of visual changes. IER is crawled
from the practical image editing requests from the Reddit
channel, consisting of 3,939 pairs of real images, accom-
panied by 5,695 editing instructions. Each image pair in
the training set is associated with one instruction. In con-
trast, each image pair is linked to three instructions for a
more objective evaluation in the validation and testing sets.

Because IER is collected from a real-world scenario, it cov-
ers more image difference categories, such as background
change, text manipulation, and local object change. The
definition of the image difference categories can be found in
Section 3.2. Due to the single domain in CLEVR and Spot-
the-Diff datasets, we mainly use IER in this work as the
testing set, which aligns our scope to have a comprehensive,
diverse, and practical dataset. For these two datasets, which
are mainly about a single domain, we use them as out-of-
distribution evaluation, which is given in Appendix G.

Category ‘ Background ‘ Text ‘ Local object ‘ Image style

Number of Images | 117 | 53 | 277 | 223

Table 6. Statistics of each image difference category in the IER
testing set.

C. Implementation Details

C.1. Training Details

For CLIP4IDC, We adopt the official implementation of
CLIP4IDC. However, as it lacks the training script and the
pretrained weights for IER, we reproduce the CLIP4IDC*
model trained on IER exactly following its provided train-
ing hyper-parameter settings of the CLEVR dataset. For
VARD-LSTM’ and NCT®, there is still no official imple-
mentation for IER and we reproduce them using the settings
in CLEVR dataset. The pre-trained Biaffine Parse in NCT
we use is from Diaparser’. For OpenFlamingo-3B, the
vision encoder and language encoder are ViT-L—-14 and
anas—awadalla/mpt-1lb-redpajama—-200b.

The cross attention interval is 1. For LLaVA-
Interleave-7B, the language model we wuse is
meta-llama/Meta-Llama-3-8B-Instruct.

For Fuyu-8B, we use adept/fuyu-8b. The training
platform we use is § NVIDIA A100s with the 80GB GPU
memory. The training epochs is 2 for the MLLMs. For the
other hyper-parameters like learning rate, weight decay,
batch size, please refer to Table 7.

D. The Performance of More Baselines

Besides the methods in the main text, we test more baselines
including NCT [65] and VARD-LSTM [62] given in Table
8.

“nttps://github.com/sushizixin/CLIP4IDC
Shttps://github.com/tuyunbin/VARD
Ghiips://githtb.com/tnynnxiﬁ/NCT

7https://qithub.com/Unipisa/diaparser
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Search/Track through Content Provenance System

Trustable Image Database

Web Image ng Original Image

Is the web image real?
What’s modified?

No, a tiger isinserted
behind the man

Our model

Figure 7. The overview of difference captioning for content provenance and authenticity. When the user asks if the web image is trustwor-
thy, the content provenance system can search for its original version in the trustworthy image database if it exists. Our model is able to
tell the user what is modified based on image difference captioning on the web image and the original one.

VL Model ‘ Learning Rate Epochs Warmup Ratio Weight Decay  Batch Sizes
OpenFlamingo-3B 5e-6 2 0.03 0.01 128
Fuyu-8B le-5 2 0.03 0.01 16
LLaVA-Interleave-7B le-5 2 0.03 0.0 16
Idefics3 Se-6 2 0.03 0.01 16
Qwen2-VL-7B-Instruct 5e-6 2 0.03 0.01 16

Table 7. The hyperparameters we use in this paper

Testing Set Method | w/ DiffTell | BLEU@4 METEOR CIDEr ROUGE-L

IER NCT X 1.64 7.97 7.47 19.40

v 1.94 9.63 7.58 23.79

IER VARD-LSTM X 1.60 8.06 5.49 18.87

v 1.71 8.54 6.02 20.08
PSBattle NCT X 2.78e-08 0.73 1.12 4.53
v 1.65¢-06 1.22 3.11 9.78
PSBattle | VARD-LSTM X 1.49¢-08 0.43 1.56 7.01
v 7.46e-07 0.88 2.07 7.79

Table 8. The comparison of the methods fine-tuned on image editing request (IER) training set with and without DiffTell using more
baselines.

E. The Experiments with Diverse Prompts performance against the single-prompt approach, as shown
in Table 9. The nine prompts we use are as follows. The
model we use is OpenFlamingo-3B. As a complex vision-
language task, it is more important for the model to under-
stand two images, identify the difference and express the
answer. Thus, to improve the vision encoder could be more
useful.

In instruction tuning, incorporating diverse prompts en-
hances model robustness, making them more adaptable and
better at generating accurate responses across varying con-
texts [11]. Initially, we use a uniform prompt “What is the
difference between two images?” across all datasets and ask
the model to provide an answer. To ablate this, we expand e Please tell me the editing instruction of how to edit
the prompt into nine different variations and compare the <|image | > to look like < | image | >.



Testing Set | w/ DiffTell | Diverse Prompt | BLEU@4 METEOR CIDEr ROUGE-L
X X 445 14.87 15.80 29.79
IER v X 6.49 16.68 21.04 31.36
v v 6.32 16.59 23.88 30.34
X X 2.35e-04 2.33 7.71 19.24
PSBattle v X 2.12 6.60 4.02 16.10
v v 1.77 6.45 4.48 16.46

Table 9. The results of performance on the IER testing set using the diverse prompts. The model we use is OpenFlamingo-3B.

Model | Idefics3-8B \ Qwen2-VL-7B
w/ DiffTell ‘ Fluency (1) Correctness (1) Relevance (1) ‘ Fluency (1) Correctness (1)  Relevance (1)
X 349 3.59 3.54 3.71 3.68 3.55
v 3.53 3.66 3.67 3.84 3.79 3.60

Table 10. The results of human evaluation on Idefics3-8B and Qwen2-VL-7B. The data we use is the 50 pairs of images in the IER testing

set. Each pair of images is labeled by 5 persons.

e Identify the transformations applied to <| image | > to
achieve the appearance of < | image | >.

e Outline the steps required to edit < | image | > so that it
matches the look of | image | >.

¢ Explain the edits necessary to convert < | image | > into
<|image|>.

e What alterations were made to <|image|> to create
<|image|>?

e Detail the changes from < | image | > to <| image | >.

e <|image|> isimagel, <|image | > is image2, tell me
what the change is between these two images.

e <|image|>isimagel, <|image | > is image2, tell me
what the change is from imagel to image2.

F. The Performance of Additional Evaluation
Metrics

As mentioned in Section 4.1, we also evaluate the perfor-
mance using SPICE and BertScore-F;. The results are pre-
sented in Table 11.

For human evaluation, we randomly select 10% of the
IER testing set (50 pairs of images) and let humans evaluate
the output of Idefics3-8B and Qwen2-VL-7B trained with
and without DiffTell. We use Amazon Mechanical Turk
(MTurk) for this user study with each caption evaluated by
5 persons, ranging from 1 (worst) to 5 (best), resulting in
500 samples. The results shown in Table 10 demonstrate
the effectiveness of DiffTell.

G. Out-of-Distribution Results

To evaluate the generalization capability of DiffTell, we test
the model trained with and without DiffTell dataset on Spot-
the-Diff and CLEVR-DC dataset without training on these

two datasets. The results of Spot-the-Diff and CLEVR-DC
using Qwen2-VL-7B are given in Table 12, showing that
DiffTell can boost the performance of out-of-distribution
(OOD) data, which is a good proof of its comprehensive-
ness.

H. Zero-shot/Few-shot Prompt Results

Investigating the potential of zero-shot learning is essential
for methods utilizing LLM. For few-shot prompt testing, we
randomly choose three examples from the IER training set.
Performance results on the PSBattle dataset are not reported
due to the absence of training data in that specific dataset.
The detailed results can be found in Table 13. The few-shot
prompt example is shown in Figure 8. The results show
that image difference caption (IDC) is a hard task for the
current LLMs, although they are trained on a huge amount
of data. Even with few-shot prompt, the results are still not
satisfying.

I. Dataset Collection Details

Image In-painting We use FireFly Generative Fill to in-
paint the image. The inputs we can provide are the original
image and the prompt for the generative model. There is no
need for us to select the parameters. The illustration is given
in Figure 11. We generate I; for COCO and MARIO-10M
subsets in DiffTell.

Data Filtering The illustration of how the annotators fil-
ter the data is given in Figure 12, 13, and 14, which are for
InstructPix2Pix, COCO, and MARIO-10M subsets, respec-
tively. For InstructPix2Pix, the annotators filter whether the
Ty, .1, matches (11, I2) or whether the change reflects on I
and Iy because (I1, I, Ty, 1,) has already been provided.



Testing Set ‘ IER Testing Set ‘ PSBattle
w/ DiffTell | X o X | X | X v
Models | SPICE | BertScore-F} | SPICE | BertScore-Fy
OpenFlamingo-3B | 9.31 10.07 | 87.13 87.80 | 3.77 5.15 | 8550 87.51
Fuyu-8B 11.34 16.07 | 87.57 88.95 | 525 6.60 | 84.61 87.56
Llava-Interleave-7B | 12.73 16.86 | 88.51 89.20 | 8.79  8.88 | 86.62 87.67
Idefics-8B 1949 22.64 | 89.54 9049 | 11.72 13.37 | 86.35 87.45

Qwen2-VL-7B 18.73 21.86 | 90.17 90.48 | 11.22 11.78 | 87.13 87.64

Table 11. The results of SPICE and BertScore-F; corresponding to Table 3 (main experiments) in the main paper.

Testing Set | w/ DiffTell | BLEU@4 METEOR CIDEr ROUGE-L SPICE  BertScore-F}

. X 251 488 412 1145 651 85.34
Spot-the-Diff | 5.86 560 924 1603 694 86.01
X 0.99 253 227 671 1707 8571

CLEVR-DC | 6.50 472 766 1727 2194 8626

Table 12. The results of out-of-distribution evaluation on Spot-the-Diff and CLEVR-DC datasets.

For COCO and MARIO-10M only providing I;, the anno- J. Extensive Experiments and Analysis on the

tators filter whether the object or the text is successfully in- Automatic Filtering

painted from ;.
We further evaluate our automatic filter pipeline in the In-
structPix2Pix dataset, using Qwen2-VL-7B as the feature
extractor, in the same manner described in Section 4.4 in

Support examples

B Addagorilla to Put a cell
the background 3 phone in
- } Near | } =ERN Jesus hand
| & ES
RS || =N

<BOS><image> image and <image> image are different in Add a gorilla to the background. <EOC> <image> image and <image>
image are different in Put a cell phone in Jesus hand. <EOC><image>image and <image>image are different in

I |
£l

Query

Figure 8. The example of how we construct the few-shot prompt.

Method | Few-shot | BLEU@4 METEOR CIDEr ROUGE-L
OpenFlamingo-3B X 1.18 8.07 8.72 16.63
v 0.84 7.64 4.09 17.54
OpenFlamingo-9B X 1.15 8.26 6.04 19.00
4 1.99 9.18 5.01 20.93

Table 13. The results of zero-shot or few-shot prompt results on the IER testing set. The few-shot prompt is the composition of 3 training
examples from the training set.
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Figure 10. Comparison between data filtered by the classifier and
human in terms of all the metrics.

the main paper. The accuracy of the data filter classifiers
for InstructPix2Pix is 87.35%, respectively, indicating that
the classifier has a satisfactory accuracy to keep clean data
from a noisy dataset. The filtered data is used to train the
Qwen2-VL-7B IDC model in Table 14. Due to the time
limit, we compared the results with and without the auto-
matically filtered 10K data from InstructPix2Pix in the last
column of Table 14, indicating the effectiveness of the auto-
filtered InstructPix2Pix data and the generalization of our
automatic data filtering pipeline.

We further categorize the data into different types of dif-
ferences and analyze the data filter accuracy on each type
of difference, so we can analyze potential bias. We also
conduct the trade-off analysis between the human and au-
tomatic data filtering using InstructPix2Pix data, with the
result displayed in Figure 10. However, we do not observe
an obvious performance trade-off in each difference type.

Training Set | B@4 M C RL S BHR

IER 17.15 19.84 64.61 4458 18.73 90.17
IER + 10K (R) | 17.20 19.66 63.63 45.02 19.53 89.95
IER + 10K (C) | 17.53 2041 6690 45.15 19.69 90.34
IER + 10K (H) | 17.97 20.67 68.02 45.25 19.70 90.46

Table 14. The results of data filtering on the InstructPix2Pix
dataset. R, C, and H refer to random data, data filtered by the
classifier, and human filtering.

K. PSBattle Dataset

The PSBattle dataset is another practical dataset used in [8]
that consists of images edited in Adobe Photoshop™ and is
curated from the "Photoshopbattles” subreddit. We include
this dataset only for the evaluation of out-of-domain data to
test the generalizability of the models. This dataset com-
prises over 10,000 images, each paired with several modi-
fied variants generated according to editing instructions pro-
vided by users. In total, there are 102,208 variants created
by 31,000 different artists. For our study, we randomly se-
lected 100 image pairs, each accompanied by three captions
obtained through crowd-sourced annotation on MTurk. The
illustration of PSBattle dataset is shown in Figure 15.

L. More Visual Results

L.1. Failure Cases in Data Filtering

As mentioned in Section 3.3, we present the importance
of the data filtering by showing more cases in InstructP2P,
COCO, and MARIO-10M datasets in Figure 16, 17, and 18,
respectively.

L.2. More Successful Cases

To better illustrate the improvement from DiffTell, we select
another two prediction results in the IER testing set from
the four categories, respectively, shown in Figure 19. The
model we use is Qwen2-VL-7B.



(a) The image before in-painting (b) The image after in-painting
Figure 11. We in-paint the image using Firefly Generative Fill in Photoshop. For each image, we provide the original image (/1) and the

corresponding mask. The mask is used to identify the selected area shown with the red arrow. We use a prompt to ask Firefly to in-paint
the image and fit the background. Normally, the Firefly will return 3 to 4 in-painted images.

Instructions: Given an input image, the output image and the editting instruction. The meanings of the terms are as follows:

¢ Input Image: The original image we want to edit.
¢ Output Image: The image generated by AI model based on the input image.
¢ Editting Instruction: The instruction used to guide the AI model to generate the output image from the input image.

You are supposed to evaluate whether the ouput image is matched with the input image and the editting instruction. After carefully check the images and the
instruction, you should select the quality score for the output image. Please check the Yes for the successful editting while No for the unacceptable editting.

input image output image

Editting Instruction: make the creek dry

Figure 12. The labeling illustration of InstructPix2Pix subsets. The two images are I; and I>. 17, 1, is given in Editing Instruction. The

annotator is asked to identify whether the 77, 1, matches (I1, I2) or whether the change reflects on I; and I» and give the answer “Yes” or
“No”. We keep those which are identified as “Yes”.



Instructions: Given an input image, the input mask and a object-free image. The meanings of these 3 images are as follows:

¢ Input Image: The original image we want to remove the object.

¢ Input Mask: The region of the object generated by Al model. Ideally the mask should cover the object we want to remove.

¢ <object>-free Image: The image processed by AI model. Ideally, there should not exist the <object> covered the mask and no extra element should be
added. The <object> here is a placeholder which be will replaced by a specific object word.

You are supposed to evaluate the object-free image, whether the object is fully removed without changing the original image content. After carefully compare the
object-free image and the input image, you should select the quality score for how well the object is removed. We set 2 levels regarding the quality of the object-
free image which are:

e Acceptable
¢ Unacceptable

The detailed criterion for the 2 categories and the corresponding example are given in the instrcution document.

Quinting ;o

input image input mask airplane-free image

Figure 13. The labeling illustration of COCO subsets. From left to right, the first, second, and third images are the original image (/1), the
input mask, and the in-painted image. We provide the input mask and object name to remind the annotator which area to focus on. The
annotator selects “Acceptable” and “Unacceptable”. We keep those which are identified as “Acceptable”.

Instructions: Given an input image, the input mask and a text-free image. The meanings of these 3 images are as follows:

o Input Image: The original image we want to remove the text.
¢ Input Mask: The region of the text generated by AI model. Ideally the mask should cover all the text.
¢ Text-free Image: The image processed by AI model. Ideally, there should not exist text and no extra element should be added.

You are supposed to evaluate the text-free image, whether the text is fully removed without changing the original image content. After carefully compare the mask-
free image and the input image, you should select the quality score for how well the text is removed. We set 2 levels regarding the quality of the object-free image
which are:

e Acceptable
¢ Unacceptable

The detailed criterion for the 2 categories and the corresponding example are given in the instrcution document.

w} [!hu

Bl cion icvn

o

input image input mask text-free image

Figure 14. The labeling illustration of MARIO-10M subsets. From left to right, the first, second, and third images are the original image
(I1), the input mask, and the in-painted image. We provide the input mask and object name to remind the annotator which area to focus
on. The annotator selects “Acceptable” and “Unacceptable”. We keep those which are identified as “Acceptable”.



* hanging person added

* The right image has a person hanging off the end of the track
with a horrified expression on his face.

* On the right, a man is clinging to the bomb bay door, about to
fall. He is not there at all on the left.

T

* In the right picture the gun is visible

* Added Head hair in left eagle and cap and gun in the left
one.

* Hawks are fighting each others in second one Hawk kept
machine gun.

* A new face has been given to batman. I think it is the face of
Will Ferral.

* The hippo is wearing a cross and holding a bible.
* The hippo is now carrying a bible and a crucifix

* The mask only covers part of the face and the man wears necklace.

glasses now. * The hippo is holding a bible and a crucifix in one of its
* Batman has been given a bushy head of hair and a large pair of hooves.

glasses.

Figure 15. Four examples in PSBattle dataset.

Add a river.

as a cartoon

Figure 16. Within the InstructP2P dataset, we have identified four sets of images, each composed of the original image, the altered image,
and the corresponding instruction. All four of these image sets represent instances of failure. In the first pair of images, not only is the
mural altered as per the instruction, but there are also changes to the face of the person in white and the text on the wall. The second
pair exhibits subtle changes that are unrelated to the provided instruction. For the third pair, the images undergo significant alterations,
including the addition of a river, surpassing the intended modifications. In the fourth pair, the changes between the two images fail to
accurately reflect the given instruction. The InstructP2P dataset is characterized by a high noise ratio, leading to a low acceptance rate of
35.13% during manual filtering.



COCO Image COCO Mask In-painted Image

Figure 17. We choose four sets of images in the COCO dataset, each comprising the original image, the dilated mask, and the in-painted
image. The initial two sets depict instances of failure, whereas the latter two sets showcase successful outcomes. The initial failure occurs
when the mask fails to adequately cover the object, and the second failure is attributed to the inadvertent addition of another object despite
the mask effectively covering the intended object. The labeling team is instructed to exclude images falling into DiffTell.



MAIRO-10M Image MAIRO-10M Mask In-painted Image
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Figure 18. We select four image sets from the MAIRO-10M dataset, each including the original image, the dilated mask, and the in-painted
image. All four of these cases have been deemed failures and subsequently excluded by the labeling team. The mask in the MARIO-10M
dataset is not very precise. All of these 4 image sets show this issue. In the first image set, the text is not very clear, either. Besides the
inadequate mask and addition objects which exist in the COCO dataset, another issue of MARIO-10M dataset is the existence of low-
quality images.




Local Object

Background

Image Style

Text Editing

w/ DiffTell: Remove all the writing from the image.
‘W/o DiffTell: Remove all the text .
GT: Remove the background with all the signatures

w/ DiffTell: Add masks to all three people.
W/o DiffTell: Add masks.
GT: Add mask to their faces.

w/ DiffTell: Lighten the entire image.
W/o DiffTell: Remove the collar.
GT: lighten backgound

w/ DiffTell: Rotate the image 90 degrees crop the image.
‘W/o DiffTell: Make the drawing more detailed and
darker.

GT: Rotate image counter clockwise

w/ DiffTell: change the background to black add the
text IM SORRY CANT HEAR YOU OVER THE
SOUND OF HOW AWESOME AM

w/o DiffTell: change the background to black add a
yellow frame add text.

GT: add a black background to the whole image, crop
the image, add the light on camera, add the whole
image to the frame, add the text under the frame.

w/DiffTell: Crop the photo and make look
clear.

‘W/o DiffTell: Remove the background .
GT: Make picture clear'

&

w/ DiffTell: Crop the image .
‘W/o DiffTell: Remove the background.
GT: Crop this image and make it lighter

e EsSiiE 11

w/ DiffTell: remove the text URGENT MESSAGE
WANTED APPROACH WITH CAUTION GENDER
MALE WEAPON SIGNAL JAMMER..

‘W/o DiffTell: remove the wanted poster.

GT: Crop out the man with the camera and add him
into a different background

Figure 19. More examples from the IER testing dataset regarding the four categories from Qwen2-VL-7B.
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